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Abstract

In all things of nature there is something of the marvellous.

Aristotle

The origin, nature and distribution of dark matter in the universe form

some of the biggest questions in modern astrophysics. Dark matter is dis-

tributed on a wide range of scales in the universe. This thesis concentrates

on galactic scales, attempting to lower the veil and probe the structure of

dark matter in galaxies.

The mass distribution of the lensing galaxy 2237+0305 is studied and a

combination of photometric, lensing and kinematic data used to constrain

the contribution of the luminous and dark mass components to the system.

The galaxy is best-fitted with a softened isothermal-like halo (inner logarith-

mic slope ∼0, outer slope ∼–2.5), and a sub-maximal disk. The kinematic

model requires further improvement for this result to be rigorous, however

the density profiles produced in N -body simulations are not preferred over

a halo with a constant density core (rc ∼ 1 kpc). The results suggest that

the combination of lensing, kinematic and photometric data provides the

strongest constraints on the distribution of dark matter in galaxies.

Subhalos of dark matter, orbiting within the potential of our Galaxy, will

interact gravitationally with the stars in the disk if they pass within their

region of influence. Subhalos can be detected by signatures in the phase-

space distribution of the stellar disk. Such signatures and their magnitudes

are calculated for subhalos with mass and distribution expected from N -

body simulations. The capabilities of the ESA satellite GAIA are used as
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the potential detection thresholds. Uncertainties in the distances to stars

combined with the expected steep mass function of dark matter subhalos and

the rareness of their passage through the stellar disk, make their detection

unlikely with the GAIA satellite.

The statistical mechanics of self-gravitating systems provide interesting

insights into their behaviour. A spherically symmetric, static dark matter

halo is studied using a statistical mechanical approach. The gravitational

potential is artificially softened to mimic the conditions under which N -body

simulations are performed, and the behaviour of the system compared with

that for a purely gravitational potential. The system exhibits a low temper-

ature phase, not accessible with pure gravity, which exists at energies probed

by many simulations. Consequently, there is no obvious reason to expect

agreement between simulated and observed profiles unless the gravitational

potential is appreciably softened in nature.
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Preface

Sections of two chapters have been published in refereed journals:

• The original work on the mass distribution of 2237+0305, presented as

part of Chapter 2, was published in the Monthly Notices of the Royal

Astronomical Society as, Trott, C.M., Webster, R.L., 2002, MNRAS,

621, 334;

• The work in Chapter 6 has been published in the Astrophysical Journal

as Trott, C.M., Melatos, A., 2005, ApJ, 618, 38.

Except where explicitly mentioned in the text, this thesis comprises my

own work.
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CHAPTER 1

Dark Matter in Galaxies and Gravitational Lensing

Something unknown is doing we don’t know what.

Sir Arthur Eddington

The universe we observe is dominated by gravitationally bound nebulous

structures of stars and gas — galaxies. The name is derived from the Greek

word galactos, and refers to the ethereal milkiness of the ribbon of light from

our own Galaxy, observed by early astronomers.

In modern astrophysics, we now understand many aspects of the for-

mation, evolution and structure of galaxies, but many pieces of knowledge

are still required to put together a complete picture. This thesis aims to

elucidate some of these pieces.

The commonly accepted view of structure formation in the universe (the

cold dark matter paradigm) holds that in the early universe, Gaussian fluc-

tuations of dark matter, the primordial substance (collisionless elementary

particles created in the early universe) that forms the basis of the galaxies

observed today, were distributed according to an initial power spectrum. As

the universe expanded and cooled, dark matter overdensities self-gravitated

and collapsed, producing increasingly deeper potential wells for baryons to

subsequently fall into. The baryons in the early universe formed out of the

cooling radiation from the Big Bang. After z ∼ 1000, the thermal equilib-

rium between particles and radiation was lost (the surface of last scattering

of photons, now observed as the CMB) and the universe was dark and neu-
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tral. Primordial hydrogen fell into potential wells and cooled dissipatively

to form the first bound baryonic objects. These objects, whether Population

III stars or quasars (accretion disks around black holes), are likely those that

first reionised the neutral universe (z ∼ 7–15).

Baryons cool dissipatively in dark matter potentials through hydrogen

line and thermal emission, and clouds of hydrogen coalesce and fragment

until their densities can ignite nuclear burning, and form stars. The proper-

ties of galaxies observed in the universe today therefore reflect the physics

of the early universe.

1.1 The structure of galaxies

Galaxies are observed to have many different shapes and forms (morpho-

logical type). Until recently, the evolutionary or other connections between

these types have been the matter of much speculation. Images to redshifts

approaching that of the dark ages (6 . z . 1000) with the Hubble Space

Telescope (HST), have provided insight into the processes of galaxy for-

mation and evolution. Disk instabilities producing bar structures (Toomre

1977; Sellwood 1981), and galaxy interactions and mergers forming early-

type from late-type progenitors (see review by Barnes and Hernquist 1992),

are examples of the ways structures can evolve in time.

One of the most enigmatic aspects of galaxies are the dark matter halos

the stars and gas are thought to lie within. Dark matter is the dominant

gravitational component to the galaxy (kinematic observations show the

dark matter to not only contain 90 per cent of the mass of the galaxy, but

also to spatially extend up to an order of magnitude further than the stel-

lar disk), but since it is cold (negligible primordial velocity dispersion) and

collisionless, it provides no thermal heating to the structure [it can provide

dynamical heating however, if it is clumped (see Chapter 5)]. In addition, it

has a negligible cross-section to electromagnetic interaction, making it im-

possible to detect directly (Weakly Interacting Massive Particles, WIMPS,

such as the neutralino may self-annihilate to produce gamma rays and this

could be used as a direct measure in sufficiently high density regions). Dark

matter is therefore a substance that enters the physics of galaxies through

gravity. This study exploits this feature, investigating dark matter prop-

erties in galaxies through i) gravitational lensing, which probes mass, not
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light — dark matter can be studied via its presence rather than requiring

its detection, ii) dynamical effects on luminous particles — using the phase-

space positions of stars in the Galaxy to infer the presence of dark matter,

and, iii) a statistical mechanical analysis of an equilibrium self-gravitating

structure.

At the most basic level, a late-type galaxy is comprised of a dark matter

halo, a thin (∼ 100–500 pc) stellar disk of younger, bluer stars with some

ongoing star formation, a spheroidal bulge component of older, redder stars,

and a component of both neutral (e.g. HI, CO) and ionised (e.g. HII, pho-

toionised by stars) gas. In addition, there is often a thick disk of old stars

extending kiloparsecs from the thin disk midplane, and instability features

such as bars and spiral arms in the thin disk. Early-type galaxies are basi-

cally the same as late-types, but with the spheroidal component dominating

the disk (also they rarely have much gas). Unlike late-types, which are pre-

dominantly rotationally supported, early-type galaxies are mostly pressure

supported by a quasi-isotropic stellar distribution.

There have been many papers in recent years discussing the matter dis-

tribution in galaxies and, in particular, the relative contributions of the

stellar disk and dark matter halo. Any attempt to model the structure of a

galaxy with multiple components is limited by the information provided by

the light we receive. This introduces degeneracies in the mass distribution

when we compare the few constrained parameters with the large number of

unknowns.

In particular, the kinematic and photometric information that can be

obtained about a galaxy cannot provide all of the data required to uniquely

solve for the mass distribution. Besides having to assume that mass follows

light (kinematics and light curves trace different properties, and mass-to-

light ratios are not well constrained), the lack of knowledge of the mass

and structure of the dark matter halo requires that an assumption about

this be made. In general, the mass-to-light ratio of the disk component in a

rotation curve can be increased and the dark matter contribution decreased,

to match the same observed curve. Breaking this degeneracy requires extra

information about the system.

One technique that has been used to side-step this problem is to assume

a maximal disk (quantified in Sackett 1997), whereby the disk contributes

the majority of the rotation (75–95%) at the radius of its maximum circu-
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lar speed. This definition takes into account the contribution to the inner

rotation curve of a bulge component. Various studies have challenged and

supported this view and they will be discussed in Section 2.4.3.

1.2 Dark matter in galaxies

Observations of rotation curves of galaxies gave the first hints of the exis-

tence of dark matter. In the 1960s and 70s, extensive studies of the circular

rotation of spiral galaxies suggested the need for dark matter to account for

the missing dynamical mass (e.g. see Rubin et al. 1962, 1978; Faber and

Gallagher 1979). The flatness of rotation curves beyond the optical edge

of these spirals contradicted the expected Keplerian fall-off. In the 1980s

and 90s, many groups used the distribution of structure in the universe to

deduce the expected properties of dark matter particles and applied these

to N -body simulations (Peebles 1984; Navarro et al. 1996). The subsequent

calculated profiles can be compared with the results of observations for con-

sistency.

The firm determination of a general trend in the features of rotation

curves, as distinct from a few abnormal systems, requires the accumulation

of data from many galaxies with varying morphological types. Salucci and

Burkert (2000) constructed ‘universal rotation curves’ (URCs) with luminos-

ity as the only free parameter, from observations of ∼1100 rotation curves.

From these URCs, they were able to subtract constant mass-to-light ratio

disks from the surface brightness distributions of observed galaxies, and de-

rive the expected contribution from dark matter. Salucci (2001) found the

dark matter halos were required to have large core regions in order to fit

the universal curves. Core radii of 3–4 disk scale lengths were found to be

consistent with observations for large spiral galaxies. More recently, de Blok

et al. (2001b) used Hα kinematics of low surface brightness galaxies and as-

sumed minimal disks to investigate the density profiles of dark matter halos

in these dark matter dominated galaxies. They found inner density slopes

consistent with constant density cores.

In the 1980s, numerical N -body simulations of collisionless particles were

developed to investigate the structures that would be formed using cosmo-

logical initial conditions such as a scale free power spectrum (Efstathiou

et al. 1985; Davis et al. 1985; White et al. 1987; Efstathiou et al. 1988). The
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cores found in real systems, however, are not consistent with the N -body

predictions for the density distribution of halos (Navarro et al. 1996), and so

further investigation is warranted. There has yet to be a solution explaining

both the simulation results and those from observational studies. Hayashi

et al. (2004a) and Hayashi et al. (2004b) propose that the discrepancy may

lie in the comparison of real galaxy rotation curves with a spherically aver-

aged, and multiple simulation-run averaged, density profile (i.e. the NFW

profile), rather than with the anisotropic output of individual simulations

— there is a range of profiles found in simulations that average to the NFW

profile. In addition, they use smoothed particle hydrodynamic simulations

(SPH) to include gas in a dark matter simulation, and observe the dynam-

ics of the system from different angles, to match to the observations of LSB

galaxies. This method is certainly a step in the right direction for the di-

rect application of simulation results — use of the full data rather than an

average — however the large number of degrees of freedom in the problem

(many different simulations used and different angles to find one that fits)

allow a solution to be found easily that may not be physical.

Recent N -body results demonstrate that, at the current resolution of

simulations, the central power-law exponent does not converge to a uni-

versal value (Navarro et al. 2004) and further investigation is required. It

seems, however, that numerical simulations that only model the collisionless

component of the galaxy cannot reasonably be compared with a real halo

that has been dynamically affected by the presence of baryons. In addition

to further improving simulations to include collisional components, careful

modelling of real systems is our best avenue for determining the distribution

of dark matter in galaxies.

This observational avenue also has its difficulties including the beam

smearing effect of low resolution data that causes the rotation to appear

slower in the inner regions of a system and therefore flatten the implied

density profile (Swaters et al. 2003). Obtaining a large amount of high

resolution and complementary data for a system is the most robust way to

proceed. Gravitational lensing can provide this additional complementary

information.
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1.3 Gravitational lensing

Gravitational lensing is a consequence of the curvature of spacetime. This

curvature due to the presence of the lens mass is calculated in the first post-

Newtonian approximation as an effective refractive index and the bending

angle of light (the angle through which the light deviates from its background

value due to the integrated deflection due to the mass) calculated using

standard optics (Schneider et al. 1992).

In practice, one observes the multiple images produced by a strong lens

(where the source is sufficiently close to the optic axis to produce multi-

ple images), and assuming some general mass distribution, calculates the

original source position. Since the source is the same for all images, such

a process can provide information constraining the mass distribution of the

lens (such as the total mass enclosed within a given image radius).

If the simplest case of point masses for both lens and source is assumed,

the positions of the images observed in the lens plane can be obtained ana-

lytically using simple geometry. This geometry is directly generalisable for

more complex mass distributions, where extended lenses comprise multiple

components. The lens equation linking these can be written easily,

α(θ) = θ − β, (1.1)

where

α =
Dds

Ds
α̂, (1.2)

is the reduced bending angle, θ is the image position, β is the source position,

and all distances are angular diameter distances (Narayan and Bartelmann

1999), which are cosmology dependent. Figure 1.1 shows these diagrammat-

ically.

For a circularly symmetric mass distribution, the bending angle scales

as α∼M(< R)/R, where R is the projected radius. Hence for an isothermal

sphere, where ρ∼r−2, the bending angle is constant with radius, producing

very different effects to the point mass, where α∼1/R. The vector bending

angle for a general mass distribution, α̂, is given by,

α̂(ξ) =
4G

c2

∫

(ξ − ξ′)Σ(ξ′)

|ξ − ξ′|2 d2ξ′, (1.3)
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Figure 1.1: Diagram of the important angles involved in strong gravita-
tional lensing. Ds, Dds and Dd are the angular diameter distances between
observer-source, lens-source and observer-lens, respectively. The source is
located at angle, β, the image at angle θ and α is the bending angle.

where Σ is the surface mass density and the integral extends over the surface

of the distribution (primed co-ordinates). The addition of multiple mass

components is trivial with this formalism.

The potential theory of gravitational lensing allows one to characterise

the mapping from the source to the image plane via quantities such as the

convergence, κ = Σ/Σcr, and shear, γ, which quantify the amount of matter

and its ellipticity. The lensing potential, ψ, is the angular diameter distance

scaled gravitational potential projected onto the plane, and thus represents

the potential one should use to calculate light path deviations for a given

mass distribution of the lens,

ψ(θ) =
Dds

DdDs

2

c2

∫

Φ(Ddθ, z) dz. (1.4)

The local area mapping from the source to the lens plane is described by

the Jacobian matrix, A, which is a function of the second derivatives of the

lensing potential, ψ. (Intuitively, just as the Laplacian of the gravitational

potential gives the density, the Laplacian of the lensing potential gives the

convergence of the lens, κ, which is the normalised surface mass density).

The off-diagonal terms characterise the shape of the lens at orders higher
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than the monopole, which describes radial deflection only,

A =
∂β

∂θ
=

(

δij −
∂2ψ(θ)

∂θi∂θj

)

. (1.5)

The shear, γ, is described partly by the off-diagonal terms of the mapping

matrix, such that

A =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

, (1.6)

where the subscripts 1 and 2 denote the two orthogonal components of the

shear.

Both internal (non-circular lens) and external (influence of other mass

along the line-of-sight) shear can be present in a lens system, and they have

different characteristics. Internal shear is more likely to produce anisotropic

distortions across the different images, whereas external shear can produce

an overall distortion across the lens. Shear produces both radial and tan-

gential deflection, and the lower order multipoles, such as the quadrupole,

can have significant deflections when compared with that of the monopole,

which is purely radial (Kochanek et al. 2004).

Gravitational lensing can occur in both the strong and weak limits. Weak

gravitational lensing occurs in low surface density regions (for example, in

the outer regions of clusters) where there is insufficient convergence to pro-

duce multiple images, but enough to produce statistically identifiable dis-

tortion of the wavefront, when many systems are investigated (Tyson et al.

1990; Miralda-Escude 1991). Such analysis is used extensively to determine

cosmological parameters, as the amount of distortion clearly depends upon

the amount of matter along the line-of-sight (ΩM , σ8) and the path length

through the matter (ΩΛ). Strong gravitational lensing occurs through the

centres of massive clusters, and for sources closely aligned with the centres

of galaxies. In these cases, if the critical surface density for multiple images,

Σcr =
c2

4πG

Ds

DdsDd
, (1.7)

is satisfied somewhere in the lens, multiple images occur (Subramanian and

Cowling 1986). Physically, this is because if Σ > Σcr, α(θ) > θ, and a light

ray can reach the observer from the opposite side of the lens to the source
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position. For spherically symmetric systems with density monotonically

decreasing from the centre, the central density must exceed this critical

value. For elliptical systems, this condition is relaxed since more mass can

be contained within a given radius for the same central density.

The distance dependence of gravitational lensing is clear from Equation

(1.7). The angular diameter distances shown here are cosmology (e.g. H0)

dependent, suggesting lensing can be used to determine the Hubble constant.

This is indeed the case, and this will be discussed later in this chapter. These

distances also constrain the redshifts for the lens and source at which one

would expect strong lensing to most likely occur. If the lens is too close (Dd

small), or the lens-source separation too small (Dds small), Σcr will be too

large for a galaxy-type mass distribution, and strong lensing will not occur.

This is intuitively obvious as a lens cannot focus too close to itself.

The optimum redshifts for the lens and source depend upon these param-

eters, but also upon the number density of sources as a function of redshift

and the cosmology employed. For the currently favoured concordance cos-

mology (ΩM = 0.27, ΩΛ = 0.73, Bennett et al. 2003), the angular diameter

distance turns over at z ∼ 1.6, implying that for z & 2, the ratio, Ds/Dds is

roughly constant at ∼1.1–2 (for lenses at redshift, zd ∼0.1–1, Hogg 1999).

This would mean that high redshift lenses should be as common as those

at z ∼ 2, however, there are two factors that reduce the number of known

high redshift sources to zero — the decrease of apparent magnitude with

distance (drops more rapidly with redshift for the concordance model than

for an Einstein-de Sitter universe), and drop of number counts of source

objects. Most known instances lens a background quasar, mostly because

quasars are bright beacons that are more easily detected with magnification

than their diffuse host galaxies. Quasar number counts peak at z ∼ 2, and

Wyithe (2004) has recently used the lack of high redshift lenses found in

SDSS to constrain the high-redshift quasar luminosity function to be very

steep, dN/dL ∼ L−3.0, for z ∼ 6, implying that the lensing optical depth

to bright quasars is small (τ(zs = 6) = (2.5±0.25) × 10−3 compared with

τ ∼ 0.05 for all source redshifts and early-type galaxies, Fukugita and Turner

1991).
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1.3.1 Magnification

When a source is gravitationally lensed, light ray bundles from it are dis-

torted by gravity. Since surface brightness is conserved for a resolved source

(photon number is conserved and specific intensity is constant along photon

paths), images are distorted into larger or smaller areas. This ratio of image-

to-source solid angle is the magnification of the source. When the source

is unresolved, such as for a quasar, there will be a brightening or dimming

in each image produced. Since magnification is the ratio of two areas, it

follows that the magnification matrix is closely related to the Jacobian of

the mapping. It turns out that,

µ = detM =
1

detA , (1.8)

is the magnification of a given image, where M is the magnification matrix.

The flux ratio, or magnification ratio, of two images provide an observational

constraint on the mass distribution of the system.

1.3.2 Time delays

Another observational effect of gravitational lensing is the delay in the arrival

of photons between different images. The size of this delay depends on

the path difference, and has two components: a geometrical delay and a

gravitational delay. The time delay for a lens system can be calculated,

based upon a given mass model and cosmology (angular diameter distances

depend sensitively on Ω0 and Λ), and compared with the observed delay. In

this sense, the time delay is a further constraint on the mass distribution of

the lens system.

Photons will take a path which extremises the Fermat Potential, accord-

ing to Fermat’s Principle. This potential is a combination of the geometrical

path length difference and the extra path length experienced when travers-

ing a gravitational potential. It is not surprising the potential is another

way of writing the lens equation. This time delay function is given by,

t(θ) =
1 + zd
c

DdDs

Dds

[

1

2
(θ − β)2 − ψ(θ)

]

, (1.9)

where the geometrical delay is contained in the first term in parentheses, and

the gravitational delay in the second term. Since Dd ∝ H0, hence t ∝ H0,
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and time delay measurements combined with lens models can be used to

determine the Hubble constant (e.g., Treu and Koopmans 2002; Chartas

et al. 2002).

1.3.3 Mass-sheet degeneracy

The combination of image positions, flux ratios and time delays appears to

place a lot of constraints on the mass distribution of a lensing system. There

are, however, other effects that can make determining the mass distribution

difficult. One is the mass-sheet degeneracy.

This degeneracy concerns quasi-constant density sheets lying along the

line-of-sight which increase convergence but otherwise leave the images un-

changed. Consider a small, constant change to the convergence, κ → (1 −
λ) + λκ, λ ∼ 1. Calculations performed with the lens equation produce

a shift in the source position (β → β/λ, in one dimension), which is not

detectable since the true source position is unknown. Similarly, the magni-

fication of a particular image changes as µ→ µλ2, but since only flux ratios

are measurable, the ratio is unchanged.

Detection of this degeneracy is important when one is using lensing to

measure the Hubble Constant, H0, where the value found will scale linearly

with the small shift, λ. One way to break this degeneracy is to include

kinematic information in the mass calculation, thereby calibrating the mass

scale at the image radius (e.g. Koopmans et al. 2003).

1.3.4 Microlensing

In addition to the mass-sheet degeneracy, image magnifications can be in-

dividually affected by microlensing. This is lensing by low mass objects,

usually stars in the lensing galaxy, that produce multiple images on the

microarcsecond scale, some of which have large magnifications. In a sys-

tem where the images are located in regions of high stellar density (such as

2237+0305, discussed in this thesis), the optical flux ratios do not always

reflect the macro-structure of the lens, but rather a superposition of that

and the microlensing magnification. The microlensing signal depends on

the local optical depth to microlenses, their velocity relative to the image

positions and the angular diameter distances Dd, Ds and Dds (if the char-

acteristic separation between caustics is too high relative to the source size,
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the effect will be washed out).

In regions with high microlens optical depth, a solution to this problem

is to measure flux ratios in a waveband where the source size exceeds the

characteristic caustic separation. This often corresponds to longer wave-

lengths where the quasar emission region is large (> 1017cm in the mid-IR

for 2237+0305 at 90 per cent confidence, Wyithe 2004).

1.3.5 Using lensing in galaxies

At the most basic level, gravitational lensing can provide additional infor-

mation to constrain the mass distribution in a galaxy. Galaxies studied

without lensing information suffer from being under-constrained systems.

Photometric combined with kinematic information can only provide partial

information, since the amount of mass contributed by the observed light (the

mass-to-light ratio) is unknown. Without a dark matter halo, the kinemat-

ics would directly probe the luminous mass components, and the rotation

curve could be decomposed correctly. With a dark matter halo, whose den-

sity profile is unknown, the rotation curve cannot be uniquely decomposed.

Therefore, a disk-halo degeneracy exists. This is often broken by assuming

a ‘maximal disk’, as mentioned earlier, whereby the disk has the maximum

mass possible to fit the rotation curve. There are arguments for and against

this approach, but maximality is, nonetheless, an assumption.

Such difficulties can be overcome using gravitational lensing, for a num-

ber of reasons. Firstly, and most simply, it provides additional constraints

to be placed on the mass model for the system. More importantly, the con-

straints are different to those provided by kinematics. The mass probed is a

projected mass, not spherical, which provides useful information about the

structure in the outer regions. The image locations are based upon the total

gravitational potential, and therefore are not confused by kinematics.

The amount of extra information is most pronounced in systems where

there are extended lensed images. Such systems provide flux information in

all independent pixels covering the lens where the image resides. In contrast,

point sources provide information at only a few (usually 2–4) positions. This

thesis will only deal with point source images. Extended images offer the

possibility of characterising the mass distribution of the lens and the source

distribution in a more unconstrained way since more information is available

and fewer assumptions need to be made. In the absence of kinematic infor-
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mation, point source lenses can only provide information about the surface

mass density in the image region, as well as the overall structure of the lens

at the image radius.

Gravitational lensing has been used recently by Maller et al. (2000) to

disassemble a galaxy into its dark and luminous mass components. Their

analysis of the doubly imaged system B1600+434 did not have a unique

solution for the mass distribution in the system due to the necessity of

invoking the Tully–Fisher relation (Tully and Fisher 1977) for rotational

information (rotation was assumed rather than measured), the large errors

on the position angle of the major components and the perturbing effect

of a nearby galaxy. In addition, the constraint of only two images limits

the number of known parameters. Their work, however, illustrated the

utilisation of lensing to break the disk/halo degeneracy. They found a high

probability for a sub-maximal disk, and the need for a constant density core

in the centre of the dark matter halo. These results pave the way for the

work presented in this thesis as they demonstrate the ability to solve for the

mass distribution given a reasonable number of known parameters.

1.4 Thesis outline

This thesis explores aspects of the dark matter population in galaxies, using

a range of techniques.

Chapters 2, 3 and 4 discuss the distribution of matter in the lensing

galaxy 2237+0305. They include the use of gravitational lensing informa-

tion combined with photometric and kinematic properties to investigate the

importance of each mass component, luminous and dark, to the structure

of the galaxy. Additional high resolution kinematic information from the

Keck telescope is analysed to improve the results significantly. The final

component to this analysis uses this information to constrain both the mass

structure and kinematic model of the galaxy.

Chapter 5 then explores the effects of local dark matter by considering

the dynamical effects on stars in our own Galaxy through the interaction

with dark matter clumps passing through the Galactic disk. Calculations

are undertaken to determine whether the GAIA satellite could detect these

observational signatures. Observational limits on the mass function of dark

matter halos will provide stringent limits on current theories of CDM.
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Chapter 6 takes a theoretical approach to the distribution of dark matter

in galaxies by considering the problem from a statistical mechanical view-

point. Following on from previous work in this field, the thermodynamic

characteristics of a self-gravitating system are applied to the results of N -

body simulations, which predict the density profiles of halos. Results from

simulations are shown to depend on the necessary, but artificial, numerical

constraints used in simulations. Most importantly, the use of a softened po-

tential for gravity in simulations leads to an additional phase in collisionless

simulations becoming accessible, that is not accessible in true gravity.

Chapter 7 concludes the thesis and offers suggestions for future work.

Throughout, we have assumed an Einstein-de Sitter universe with a

Hubble constant of H0 = 70 kms−1Mpc−1. This produces a 2 per cent

change in the combination Dds/Ds compared with a concordance cosmology

(ΩM = 0.3,ΩΛ = 0.7) for 2237+0305, and therefore does not strongly affect

the bending angles.



CHAPTER 2

2237+0305: Introduction

The galaxy 2237+0305, which gravitationally lenses a background quasar

into four images, is introduced and previous published studies of its mass

distribution reviewed. A comprehensive mass model is developed and galac-

tic properties such as mass-to-light ratios determined, based upon the best-

fitting solution to a combination of lensing and photometric data. It is found

that a high quality rotation curve is required to break the remaining degen-

eracies in the system, and to determine the relative contribution of the disk,

bulge and dark matter halo to the support of the galaxy and lensing of the

system. Efforts to measure a rotation curve in both the optical and radio

are presented. A full rotation curve for this system would allow the most

comprehensive analysis of the mass distribution of any lens galaxy.
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Figure 2.1: 15 second false colour image of 2237+0305 (taken with the Gem-
ini acquisition camera, Randall Wayth, priv. comm.). The four centrally
located images are barely resolved as yellow points. The red region is the
centre of the bulge and the bar is observed at a different position angle to
the disk, with its outer regions joining the spiral arms. This image is ∼1′

across corresponding to ∼45 kpc at the galaxy redshift.

2.1 2237+0305: A barred spiral galaxy

2237+0305, a barred spiral Sab type galaxy at a redshift of z=0.0394 was

first discovered by Huchra et al. (1985), but the lensed images were first

seen by Yee (1988). Almost collinear with the centre of the galaxy (the

optic axis) is a background quasar at z=1.695. The geometric conditions of

this system are favourable to macrolensing of the quasar through the bulge

of the galaxy.

Huchra’s lens, as it is often termed, has been studied extensively over

the past fifteen years, mainly due to its proximity to us, and the ability to

image the galaxy with ground-based telescopes. For this reason, it is the

ideal laboratory in which to study lensing and, more importantly for this

work, the structure of the lensing galaxy.
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Galaxy 2237+0305 is improbably close to the line-of-sight to the source

(probability of occurrence ∼10−4, Schneider et al. 1988). The four, almost

symmetric images of the background quasar straddle the central nucleus,

placing constraints on the structure of the inner-most regions of the galaxy.

Traditionally, it has been difficult to obtain information in these regions

of any galaxy due to the degeneracy introduced by multiple mass compo-

nents and smearing of spectroscopic data from non-circular stellar and gas

motions. Lying at low redshift, the lens galaxy displays a visibly extended

spiral disk, allowing a detailed investigation of its mass distribution beyond

the lensing regions. In addition, two points on the rotation curve have been

obtained from neutral hydrogen observations (Barnes et al. 1999). The com-

bination of its proximity and its improbable alignment with the background

quasar makes this system the ideal laboratory for studying galactic struc-

ture.

In addition, since the quasar images are observed through the high stellar

density bulge of the galaxy, microlensing of the quasar by bulge stars may

be observed. Such measurements have been used to infer that the optical

emission region of the quasar is smaller than the characteristic size of the

region of high magnification of a bulge star caustic ( < 2×1015cm, Wamb-

sganss et al. 1990). More recently, the mid-IR flux ratios and their lack of

microlensing contamination have been used to constrain the size of the mid-

IR emission region (Wyithe et al. 2002). Wayth et al. (2004a) use highly

resolved IFU data of the galactic centre to measure flux ratios for the broad

emission lines, CIII] and MgII and nearby continuum wavelengths, between

the images. Assuming a macro-lens model for the system, the difference

between the magnifications of the line and continuum images can be used to

constrain the size of the broad-line region (∼0.1pc). These measurements

are critical for constructing a model for the structure of QSOs.

The lens has a visible central bulge, a stellar disk and a perturbing bar.

The four images straddle the nucleus in an Einstein Cross configuration and

their positions have been measured accurately (Crane et al. 1991). The

major axis of the disk and bulge have been measured by Yee at a position

angle of 77◦ (East from North), and the images at an angle of 67◦. The

rotation of the images away from the major axis of the galaxy is due to the

torqueing effect of the bar at a position angle of 39◦. Schmidt et al. (1998)

modelled the mass distribution in the bar and its effect on the positions of
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Figure 2.2: Locations of the four lensed images as measured by Crane et al.
(1991) and the major axes of the principal galactic components as measured
by Yee (1988).

the images. The angular positions of the major components of the galaxy

are displayed in Figure 2.2.

The scale lengths of the luminous components of the galaxy have been

measured from HST light profiles by Schmidt (1996), and their ellipticities

by Racine (1991) and Irwin et al. (1989), and thus many of the galactic

parameters have been measured previously.

Qualitatively, the majority of the convergence will be provided by the

central bulge (in the absence of a cuspy dark matter halo) as it dominates

in the region of strong lensing. The disk will contribute both globally and

add significant convergence to the inner regions. The bar will add little con-

vergence for the lensing, but will provide shear through its rotated position

angle. In addition, the inclination of the disk and flattening of the bulge will

also contribute to the twisting of the image positions. The presence of a dark

matter component to the galaxy will add convergence and, if non-spherical,

shear. Given the highly elliptical nature of the visible components already

discussed, the halo will initially be assumed to be spherical, since the other

components can account for any internal quadrupole.

In this work a mass model for the galaxy 2237+0305 will be constructed
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based upon a combination of lensing and photometric information. Sec-

tion 2.2 reviews previous work undertaken on this galaxy. Section 2.3 then

presents the parametric mass models used in the study and discusses their

applicability. The results are then presented in Section 2.4, including the

best-fitting source position, rotation curve and mass-to-light ratios. An im-

proved method is then discussed in Section 2.5, and the implications for the

structure of the dark matter halo presented in Section 2.6. Attempts to

measure kinematic information for the galaxy are described in Section 2.7

and then conclusions drawn in Section 2.8.

2.2 Constraints and previous work

High resolution imaging and detailed modelling of Huchra’s Lens has pro-

vided us with many of the model parameters required for fitting a mass

distribution. Schmidt (1996) used I-band HST imaging to measure the disk

and bulge scale lengths, as well as to determine their ellipticities. These re-

sults updated values from previous studies by Yee (1988) and Huchra et al.

(1985). These data leave the disk and bulge mass-to-light ratios as the only

parameters to be fitted for these components. The bar has a measured

ellipticity, position angle and major axis, and within uncertainties in the

mass-to-light ratio, is completely determined by Schmidt.

Schmidt deconvolved the HST light distribution using two different bulge

models — an exponential and a de Vaucouleurs surface mass profile. Results

from the literature show that one or other of these profiles usually fits a bulge

well. Carollo et al. (2001) show from HST observations that the form of the

bulge mass profile is mildly morphologically dependent. For Sa-Sb galaxies,

such as 2237+0305, both types are observed and thus an exploration of both

models is prudent.

One further constraint and one check will be applied to the final rotation

curve. Neutral hydrogen observations by Barnes et al. (1999) at the VLA

provide two rotation points in the outer regions of the galaxy. In these

regions, the visible matter has fallen below observational levels and the HI

is acting as a tracer of the dark matter distribution. Unfortunately, the data

are not of high enough angular resolution to probe the rotation in the inner

regions of the galaxy. An additional piece of information is provided by

gravitational lensing, where the position of the images in combination with
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the geometry of the source-lens-observer system gives the projected mass

enclosed within the images (Rix et al. 1992; Wambsganss and Paczynski

1994). The consistency of this value with the mass distribution found will

act as a check on the result. The image radius is defined as the average of

the radii of the four images from the centre of the galaxy. This corresponds

to rim = 0.9 arcsec ≡ 670h−1
70 parsecs. The shape of the halo is completely

unconstrained observationally. Both the scale length and the halo total mass

will be fitted.

There are therefore seven parameters for which a fit is required — four

mass-to-light ratios, one core radius and two co-ordinates of the source po-

sition. As constraints, there are eight co-ordinates of image positions and

two rotation points. These observational constraints are given in Table 2.1.

Thus, there are three degrees of freedom.

The galaxy has been previously modelled by many groups. Huchra et al.

(1985) undertook the initial work on the system, measuring ellipticities and

scale lengths and providing a rudimentary lensing analysis by modelling

the galaxy with a single circularly symmetric component. Note that their

observations did not resolve individual images. They showed that the in-

ferred mass-to-light ratio is within current values for nearby galaxies. Kent

and Falco (1988) approximated the galaxy as an oblate spheroid, citing the

bulge and the bar as the two primary lensing components. Their analysis at-

tempted to fit the observed quasar fluxes to their model and was reasonably

successful, although the fluxes of two of the images were not reproduced.

Contemporaneously, Schneider et al. (1988) used a single, elliptical de Vau-

couleurs bulge to model the galaxy mass distribution. They fitted two free

parameters, the mass-to-light ratio (assumed to be constant) and the source

position, given the image positions, by minimising the deviation of predicted

positions from those observed. Unfortunately, they were limited by imaging

taken with large PSFs and by the simplicity of their modelling. Both Kent

and Falco (1988), and (Schneider et al. 1988) find different positions for the

background source, as does Schmidt (1996) in his analysis, which included

the bar. Schmidt combines the disk and bulge into a single component with

the ellipticity Racine (1991) measured for the bulge alone. The bar was then

studied in detail using high resolution HST (WF/PC-1) I-band imaging and

the source position again back-mapped from the measured image positions.

This is the first study to include the dark matter halo in the modelling.
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Quantity Value Source

Halo

No constraints

Bulge

Position angle 77◦ Yee (1988)
Ellipticity (=1−b/a) 0.31 Racine (1991)
dV

Scale length 4.1±0.4′′ (3.1kpc) Schmidt (1996)
Exp

Scale length 0.59±0.03′′ (0.45kpc) Schmidt (1996)

Disk

Position angle 77◦ Yee (1988)
Inclin. angle 60◦ Irwin et al. (1989)
dV

Scale length 11.3±1.2′′ (8.6kpc) Schmidt (1996)
Exp

Scale length 5.6±0.4′′ (4.27kpc) Schmidt (1996)

Bar

Position angle 39◦ Yee (1988)
dV

Sfc. Brightness I0=20.4±0.2 Schmidt (1996)
Ellipticity 0.64
Exp

Sfc. Brightness I0=19.9±0.2 Schmidt (1996)
Ellipticity 0.89

Images

Mass Enclosed (1.48±0.01) h−1
75 WP (1994)

(×1010M�) = (1.59±0.01) h−1
70

Positions (”) ∆RA ∆Dec. Crane et al. (1991)
Image A 0.093 -0.936
Image B 0.579 0.737
Image C -0.719 0.266
Image D 0.761 -0.419

Rotation:vcirc
22 ± 1 kpc 310±15 kms−1 Barnes et al. (1999)
29 ± 1 kpc 295±15 kms−1

Table 2.1: Assumed values for the mass distributions from previous work.
Image positions are relative to the galactic centre, and have positional uncer-
tainties of ±5mas. WP (1994) denotes Wambsganss and Paczynski (1994),
and the central I-band magnitudes (I0) are measured in mag./arcsec2. dV

and Exp denote models with a de Vaucouleurs and an exponential bulge,
respectively.
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In order to have a reasonable chance of understanding the complex struc-

ture of this lens, and hence its lensing characteristics, one needs to model

each component of the lens carefully. With the accumulation of data on this

galaxy over the past fifteen years, this is now possible.

2.3 Current mass model

Prior to the measurement of a high-quality optical rotation curve, the most

comprehensive models for the mass distribution of 2237+0305 were pub-

lished in Trott and Webster (2002) and Trott and Webster (2004), the results

and models of which are now discussed.

2.3.1 Mass profiles

Models will be constructed for the mass distributions of the bulge, disk, bar

and dark matter halo using parameters from previous studies, and map light

rays from the measured image positions to the source plane. Varying the

contribution of each component will vary the convergence and shear within

the images and shift their positions in the source plane once mapped from

the lens plane via the lens equation (‘back-mapped’). A potential solution

is obtained when a particular addition of the four components produces a

common source position. Clearly, the four images originate from the same

point in the source plane. The actual position of the source quasar is un-

known. The position of the centre of the galaxy will be considered fixed

given the relatively few degrees of freedom.

Rotation curves for candidate solutions will be produced and compared

with neutral hydrogen rotation measurements and the measured mass lying

within the images. The combination of both lensing and kinematic con-

straints increases the number of constrained parameters and consequently

reduces the number of unknowns.

The models used for the mass distributions of the four principal galactic

components are standard profiles from the literature, tailored to suit this

galaxy.

The bulge is modelled as both a modified de Vaucouleurs surface mass

distribution (de Vaucouleurs 1948, 1959), where it is assumed the mass fol-

lows the light (constant mass-to-light ratio) and an exponential surface mass

profile, as in the models of Schmidt (1996). The modification to both allows
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the introduction of an ellipticity, e, such that for the de Vaucouleurs profile,

log Σ(x, y) = log Σ0 − 3.33











x2 + y2

(1−e)2

rb





1
4

− 1






, (2.1)

where Σ is the value of the surface mass density at that position, rb is the

characteristic scale length of the bulge, and e is defined by,

e = 1 − b

a
, (2.2)

where a and b are the semi-major and minor axes respectively. The cen-

tral surface density (Σ0×103.33) is denoted Σbg. The exponential profile is

modelled simply by introducing the ellipticity (assumed to be a projection

effect),

Σ(x, y) = Σbge
−f(x,y)/rb , (2.3)

f(x, y) =

√

x2 +
y2

(1 − e)2
(2.4)

and again Σbg is the central surface mass density.

The disk surface density is modelled with an exponential function. Unlike

the bulge which is treated with the ellipticity as measured, the disk is rotated

to its measured inclination of i=60◦. This involves projecting the volume to

a surface mass density by rotating the z-axis and redefining co-ordinates. If

the disk is assumed to be uniformly distributed in the z direction, then one

can simply write,

ρ(x, y, z) ∝ e−
√
x2+y2/rd , (2.5)

where the proportionality includes a factor reflecting the thickness of the

disk, assumed to be constant, and rd is the characteristic disk scale length.

The more complicated, but often employed, sech profile for the disk thickness

is not used in this simplistic analysis. Later work with a thin disk shows that

the results are not dependent upon this choice. Upon rotation about the

x-axis (such that it becomes the major axis of the ellipse) by the inclination

angle, i=60◦, the surface mass density is the integral through the rotated
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axis, z′,

Σ(x′, y′) =
Σdk

∆z

z′

max
∫

z′

min

e−
q

x′2+((z′−z′

min
) sin i+ y′

cos i
)2/rd dz′, (2.6)

where the limits of integration bound the original constant disk thickness at

the inclination angle (taken as ∆z=500pc), the primed co-ordinates repre-

sent the new, observed Cartesian system and Σdk denotes the central surface

mass density.

The bar has been extensively modelled by Schmidt (1996) and his surface

mass distribution and position angle will be used. Schmidt uses a Ferrers

model with an ellipticity, e,

Σ(x, y) = Σbr

(

1 − x2

a2
− y2

b2

)λ

, (2.7)

where Σbr is the central surface density, λ is the Ferrers exponent, and the

(x, y) co-ordinates lie in the rotated frame of the bar. Schmidt finds different

exponents, ellipticities and scale lengths depending on the profiles used to fit

to the light distribution. For an exponential bulge and disk, he finds λ=2,

e=0.89 and b=1.0±0.3 arcsec fit the observations best. For a de Vaucouleurs

bulge and exponential disk, he finds λ=0.5, e=0.64 and b=3.1±0.9 arcsec.

In this analysis, the central surface density remains a free parameter. Here

Σcr is the critical surface density [Equation (1.7)].

The profile of the dark matter halo is controversial. Conventional the-

ories where ΛCDM is the preferred cosmology have been very successful in

explaining the observed large scale structure of the universe (e.g. Peebles

1984). Navarro et al. (1996, hereafter NFW) used N-body simulations to

derive a density profile for such a cosmology. One feature of the NFW pro-

file is a cuspy central region with α ∼ −1 where ρ ∼ rα. This steepens to

α ∼ −3 for r � rh, where rh is the characteristic scale length of the halo.

More accurate simulations have pushed the cuspiness at r ∼ 0 to α ∼ −1.5

(e.g. Moore et al. 1999b). Recently, higher resolution simulations showed

that at the best resolution currently attainable, there is no convergence to a

particular power-law inner slope (Navarro et al. 2004), but most simulations

lie in the range [−1.5,−1]. Observational work by de Blok et al. (2001a) on

low surface brightness galaxies has shown the need for a core in the dark
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matter halos, using optical rotation curves and fitting minimal disks. LSB

galaxies are expected to be dark matter dominated and some studies have

attempted to reconcile these results by including the effects of baryons on

the distribution of dark matter (Athanassoula 2004; Sellwood 2003; Wein-

berg and Katz 2002). Other observational studies have found similar results.

Bolatto et al. (2002) modelled the mass structure of NGC 4605 using CO

and Hα rotation curves and found the inner regions to be shallower than

those of CDM simulations (ρ ∼ r−0.65 for the steepest inner slope). Simon

et al. (2003) performed a similar analysis with the dwarf spiral NGC 2976

and found a shallower slope (ρ ∼ r−0.17 − r−0.01).

The amount by which the baryons can disperse the dark matter from the

central regions via heating or draw it in via adiabatic cooling is still a matter

for debate. The ability of N -body simulations to correctly reproduce the

structures of collisionless dark matter has recently also come under scrutiny

(e.g. see Trott and Melatos 2005). Simulations employ a softened gravita-

tional potential, for numerical reasons, which may introduce an unphysical

phase in which the system can reside.

CDM has been challenged further by the missing satellite (Moore et al.

1999a) and angular momentum problems (Sommer-Larsen and Dolgov 2001,

for a recent discussion). The former concerns the small number of satellite

galaxies observed in orbit around our Galaxy compared with that predicted

by the theory, and the latter refers to the predictions of CDM of too much

angular momentum loss to support observed disk galaxies (simulations show

that the disk will transfer much more angular momentum to the dark mat-

ter halo, and hence be smaller, than observations can accommodate). The

angular momentum discrepancy occurs if one assumes that the dark mat-

ter particles and baryons have the same angular momentum distribution.

If this is not the case, as discussed by Vitvitska et al. (2002) and Primack

(2003), and the dissipative processes undergone by the baryons affect the

distribution, this problem may be solved. The missing satellite problem can

be partially overcome by assuming that many low mass subhalos do not

form stars or form so few that they have extremely low surface brightness

and are below observational limits (Bullock et al. 2000).

Since there is no general agreement, the model for the dark matter halo
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is chosen as a softened isothermal sphere (Kormann et al. 1994),

Σ(r) =
σ2
v

2G

1
√

r2 + r2c
, (2.8)

where σv is the velocity dispersion and rc is the core or break radius. There

are several reasons for this choice of profile. Firstly, it has one less parame-

ter than an NFW+core profile (no scale length apart from the core length).

This is useful given the few degrees of freedom. Secondly, the profile natu-

rally asymptotes to a flat rotation curve for r � rc. Finally, recent studies

have found that the two models are indistinguishable when the remaining

mass components are taken into account — Weiner et al. (2001) modelled

NGC 4123 with both profiles and found their shape had a minor effect on

the results. In addition to this, the choice of a spherical halo is a simplifi-

cation in that it precludes the need to introduce another parameter. This

choice is partially justified by the ellipticities in the other components. They

are adequate to produce the required ellipticity. Furthermore, recent results

from Ibata et al. (2001) suggest our Galaxy’s dark matter halo is spherical.

They used evidence of the tidal stream from the Sagittarius dwarf galaxy

to show that the halo potential cannot be flatter than q < 0.7 and probably

has q > 0.9, where q is the axis ratio. Results from collisionless N -body

simulations, however, show halos to be triaxial (Katz 1991; Dubinski and

Carlberg 1991; Dubinski 1994). More recently, Wayth et al. (2004b) con-

cluded the halo of 0047-2808 was no flatter than q = 0.85, based upon a

detailed lens mass reconstruction from the optical Einstein ring observed in

that system. A spherical halo is therefore an adequate first approximation.

2.4 Results

2.4.1 Source position and rotation curve

The lensing galaxy was constructed as a two-dimensional array of surface

mass elements, with an exponential spatial scale. This feature allowed the

important central regions to be highly resolved, while keeping the array

dimensions computationally tractable. The galaxy was rotated from its

position angle to align the x-axis with the galactic major axis, and the

image positions rotated to a right-handed co-ordinate system. The four
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mass components were constructed and overlaid on the mass array, forming

a surface mass distribution for the galaxy. Alterations were made to this

array when varying the halo core radius, rc, or the scale lengths of the

bulge and disk. The bending angles for the particular distribution were

then calculated.

The bending angles are calculated for particular values of bulge and disk

scale length, for a given bulge profile using Equation (1.3). These values for

the four components then were summed together varying the mass-to-light

ratios of each component. Since the bending angles scale linearly with mass-

to-light ratio, variations in the overall scaling parameters can be considered

after the angles have been calculated.

Rotation curves were carefully constructed to incorporate the lack of

spherical symmetry in the disk and bulge. The functional form for the disk

rotation was obtained for an exponential disk from Binney and Tremaine

(1987). The de Vaucouleurs bulge was de-projected into an elliptical volume

mass density using the profile of Fillmore (1986) and the rotation calculated

by equating the centripetal and gravitational accelerations.

The mass measured by Wambsganss and Paczynski (1994) within the

images uses the relations of lensing and determines the projected mass in

a cylinder bounded by the images and integrated along the line-of-sight. A

suitable distribution of mass profiles must satisfy this constraint. The con-

sistency between this mass and a solution that reproduces the correct image

positions does not provide a completely independent constraint as the image

positions ensure this mass is correct — it only demonstrates the true con-

vergence and shear that has already been accounted for in the source finding

program. As such, the consistency of these points provides a check that the

source finding program is reconstructing the correct shear and convergence.

The process of deciding which distributions adequately fit all of the con-

straints reduces to the minimisation of the χ2 statistic. For a particular set

of profiles for the luminous mass components (as given in Table 2.1), a search

through five dimensional parameter space (four mass-to-light ratios and one

core radius) was performed. For each model providing a suitable mass en-

closed within the images, the eight image positions and the two points at

the pertinent positions on the rotation curve, were calculated. These were

used to calculate the χ2 statistic and the minimum found. In addition to the

variation of the mass profiles [de Vaucouleurs (dV) versus exponential (Exp)
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bulge, and subsequent changes in disk and bar profiles], the scale lengths of

the disk and bulge were varied to their 1σ observational limits in order to

obtain a more complete coverage of parameter space.

The incomplete Gamma Function provides the goodness-of-fit for a sys-

tem with n degrees of freedom (d.o.f.) and a χ2 statistic. For a system with

three d.o.f., a solution with the probability to 1σ (68%) of occurring not by

chance, is given by solving,

1 − F (n/2;χ2/2) = 0.68 (2.9)

where F (α;β) is the incomplete Gamma Function (Press et al. 1992). The

solution for n=3 is χ2
max=1.5. No model was found to be statistically ac-

ceptable according to the criterion of Equation (2.9). This is most likely

due to the idealised mass models used. The model corresponding to the

minimum value found will be investigated and improvements to the model

discussed. The error analysis for the best fit result will provide information

on the sensitivity of the solution to the different parameters. The errors on

a parameter will be taken to be the deviation of the parameter value where

the χ2 increases by one, while holding the values of all other parameters con-

stant. This is not a full covariant analysis where all parameters are varied

simultaneously, but is suitable for the simple analysis presented here. The

results of this section are only intended to be a guide to the information

that can be obtained with more data for the system, applied in Chapter 4.

The results for the model with a de Vaucouleurs bulge are shown in Table

2.2, and an exponential bulge in Table 2.3.

These tables clearly demonstrate the superiority of the former over the

latter. The χ2 parameter for the exponential bulge results is evenly dis-

tributed between error in the rotation curve points and the image positions.

It seems the rotation curve cannot be sufficiently constructed to satisfy the

mass enclosed within the image radius as well as the two points measured in

the curve. Similarly, the combination of bulge, disk and bar cannot produce

the required shear as well as an acceptable rotation curve.

Conversely, the results for the de Vaucouleurs bulge and exponential disk

are quite promising. None of the combination of scale lengths produced an

acceptable χ2 (≤1.5), however, the values are of the right order of magnitude.

The best result is produced at the 1σ upper limit of the disk scale length
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rb 3.1 3.1 3.1 2.8 3.4
rd 8.6 9.5 7.7 8.6 8.6

rc 15.3±0.4 13.4±0.4 14.9±0.5 - 14.5±0.4
σv 266±4 233±4 246±4 - 257±4
Σbg 9.66±0.04 9.53±0.04 9.47±0.04 - 8.66±0.04
Σdk 242±24 506±30 571±38 - 447±35
Σbr 824±23 821±20 818±20 - 783±22

χ2 10.95 5.26 6.99 >500 9.81

Table 2.2: Best-fit parameters for a given model, exponential disk and de
Vaucouleurs bulge. The scale lengths (rb, rd) are given in kpc; σv is the
velocity dispersion (km/s) of the halo profile; Σbg, Σdk and Σbr are the
central densities (M�pc−2) for the bulge, disk and bar respectively. The
bulge values shown are divided by 105.

rb 0.45 0.45 0.45 0.43 0.47
rd 4.27 4.58 3.97 4.27 4.27

rc 15.2 15.2 15.2 15.9 15.7
σv 243 243 243 262 239
Σbg 3.0×104 3.0×104 3.0×104 3.2×104 2.9×104

Σdk 0.0 0.0 0.0 3.6 0.0
Σbr 924 924 924 934 894

χ2 140 140 140 106 210

Table 2.3: Same as for Table 2.2 except for an exponential disk and bulge.
Symbols have the same meaning, but the bulge scaling is correct. Uncer-
tainties were not calculated due to the large χ2 values.

as measured by Schmidt. Without a continuum of solutions between these

scale lengths, it is difficult to predict if an acceptable solution occurs within

the measured limits. Without the added accuracy of further rotation points,

this solution will be taken to be acceptable and the analysis based upon it.

The χ2 for this result is distributed evenly between error in the rotation

points and the image positions.

Figure 2.3 shows the rotation curve produced from this solution and the

components used to construct it. The total rotation curve is still rising

at the edge of the plot due to the influence of the halo. Here, the three

luminous components are falling away, particularly the bulge and bar which

are essentially contributing no mass. This rise could pose a problem in that

rotation curves are observed to be flat or falling. Simply scaling down the

halo core size would alleviate this problem, however it would also affect the
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Figure 2.3: Rotation curve for the best solution (rb=3.1kpc, rd=9.5kpc,
rc=13.4kpc, σv=233km/s, Σbg=9.53×105M�/pc2, Σdk=506M�/pc2,
Σbr=821M�/pc2) as in Table 2.2. The curves are total (solid), halo
(dash-dot), disk (dotted), bulge (short dashed) and bar (long dashed). The
two vertical lines denote the rotation points from HI measurements and
their 1σ uncertainties.

convergence at the image positions. Although the halo does not contribute

significant mass within the images, losing this would require a scaling up

of another component. As all of the other modelled components contribute

shear, this would affect the overall image positions and increase the χ2.

Another halo profile may provide a better fit.

As mentioned above, it is pertinent to calculate the projected mass of

each of the components within the images. This involves the integration of

mass within a cylinder out to the image radius and through the line-of-sight.

Table 2.4 displays the results. The bulge clearly dominates the convergence

within the image region. Variations in the overall scalings of the halo, disk

and bar components will make less difference to the lensing than a change

in the bulge value. These results demonstrate the nature of stacking these

mass components. An increase in the halo mass (for example, due to a
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Component Mass Enclosed (×108M�)

Halo 6.8±0.2
Bulge 130.3±0.5
Disk 7.1±0.4
Bar 11.8±0.3

Total 156.0±1.4

Table 2.4: Projected mass within the image radius divided into the four
mass components for the best fit solution of Table 2.2.

Group ∆N (arcsec) ∆E (arcsec)

1. Kent and Falco (1988) -0.02±0.01 -0.08±0.02
2. Schneider et al. (1988) 0.015±0.005 -0.004±0.005

3. Schmidt et al. (1998) -0.014−0.003
+0.001 -0.063−0.010

+0.009

4. This work -0.014±0.001 -0.072±0.001

Table 2.5: Mean and standard deviation of the source position for different
groups, as measured from the centre of the galaxy. ∆N and ∆E refer to the
offset from the centre of the galaxy in the north and east directions.

small core region) would necessitate a decrease in the bulge. For this to be

an adequate solution, however, the halo cannot be too large, otherwise it

contributes too much rotation at the HI points, and the loss in shear from

the bulge must be compensated for in another elliptical component. Thus,

the combination of requiring correct convergence and shear is able to break

the disk/halo degeneracy, removing the need to consider both maximal and

minimal disks (Maller et al. 2000), is one assumes a spherical halo.

In addition to finding the best-fitting bulge and disk contributions to the

rotation curve, one can perform a similar analysis on the source position for

each potential solution. The results of this analysis are shown in Table 2.5,

compared with those from previous groups. The source position for a given

configuration was found by averaging the back-mapped positions of the four

images. The results fit well with those of Schmidt et al. (1998) and Kent

and Falco (1988), but not with Schneider et al. (1988). The consistency of

three of the results is encouraging.

The image positions reproduced with this model are broadly consistent

with observations. Figure 2.4 displays the model and real image positions,

as well as the location of the source.

The total mass of each of the galactic components can be calculated. The

optical disk extends out to r ∼ 25-30 kpc (Yee 1988) and the dark matter
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Figure 2.4: Comparison of the model and measured image positions for the
best-fit solution. The crosses denote the model positions, the adjacent di-
amonds the measured, the triangle is the assumed galactic centre, and the
isolated diamond is the source position. The 1σ uncertainties on the mea-
sured image positions correspond approximately to the size of the diamonds.
The positions are labelled A, C, B, D clockwise from the bottom using the
Yee (1988) convention.

halo will presumably continue far beyond this radius. As such, the masses

calculated will be those enclosed within a sphere with radius r = 30 kpc,

centred on the galactic nucleus. The results are displayed in Table 2.6. These

values are consistent in their order of magnitude with the nominal mass

ranges measured for galactic components. The dark matter halo contributes

∼60 per cent of the dynamical mass of the galaxy within the optically visible

region. If the halo could be probed to larger radius, where, according to its

rotation curve, it clearly extends, it would contribute much more to the

overall galactic mass.

The surface mass distribution of the four components combined can be

represented on a log-log plot to study the slope as a function of radius. This

information is displayed in Figure 2.5. The dashed lines are normalised fits

to Σ ∝ r−0.3 (short-dashed) and Σ ∝ r−1 (long-dashed). The central slope

overall is reasonably steep given the large influence of the bulge. The dark

matter halo has zero slope in the inner regions given its large core radius.

The transition to ρ ∼ r−2 is expected given the dominance of the halo in

the outer regions.
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Component Mass (<30 kpc) h−1
70 M�

Halo (3.7±0.1) × 1011

Bulge (6.7±0.1) × 1010

Disk (1.7±0.1) × 1011

Bar (2.3±0.1) × 1010

Total (6.2±0.2) × 1011

Table 2.6: Masses of the four galactic components from the potential solu-
tions of Table 2.2. The values given are total mass within a radius of 30 kpc
in solar masses. The range of halo values demonstrate the variation in total
halo mass for the potential solutions.

2.4.2 Bulge and disk mass-to-light ratios

In order to analyse the bar in 2237+0305, Robert Schmidt decomposed

light profiles by taking cuts along the major and minor galactic axes. These

profiles can be used to investigate the mass-to-light ratio of the bulge and

disk in the I-band (Schmidt, private communication). A deviation from a

constant mass-to-light ratio across an individual component could either in-

dicate the non-applicability of the mass profiles to this galaxy, or an intrinsic

colour variation. Such a failure of the light to trace the mass would have

implications for analyses of galactic disks where the assumption of constant

mass-to-light ratio is often made.

The major axis light profile, once calibrated to units of solar luminosity,

clearly displays the addition of two distinct components. The central region

is dominated by a steeply falling bulge region, which flattens to a more

gradually decreasing disk. The luminosity was calculated assuming a solar

absolute magnitude in the V-band and correcting it to the I-band using the

Vilnius spectral shifts of Bessell (1990).

The mass-to-light ratio for the disk is calculated, initially, by simply

dividing the best fit mass profile by the luminosity profile (see Figure 2.6).

The location of a probable spiral arm is visible as a dip at a radius of ∼13

kpc. The plot is not flat, as one would expect if the disk light followed a

perfect exponential with the scale length used. Instead, there is a noticeable

gradient to the ratio. This is possibly an indication of further structure

beyond the simple models used. An additional minor difference between

the models presented here and those of Schmidt is the use of a thick disk

in this work. Finally, the presence of the bar affects the underlying mass
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Figure 2.5: Log-log plot of the surface mass density of the inner regions of
the best-fit solution (solid line). The short-dashed line indicates the slope
of the profile in the central 10pc (Σ ∝ r−0.3). The long-dashed displays the
transition to a more isothermal profile (Σ ∝ r−1) outside of the core.

Figure 2.6: Disk I-band mass-to-light ratio as found by dividing the major-
axis luminosity profile into the surface mass. The central 4 kpc has been
removed to eliminate the effect of the bulge.
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distribution. Interestingly, if the disk scale length is increased to rd ∼
12kpc, the gradient virtually disappears. This does, however, neglect the

bar influence on the light distribution. As a crude estimate of the value of

the ratio, however, one can average the result from the curve to find,

(M/L)I,d = 1.1 ± 0.2h70, (2.10)

where I indicates the wavelength band and d denotes the disk.

This value is consistent with those from the literature. Syer et al. (1998)

used disk stability arguments to place an upper bound on the I-band mass-

to-light ratio, (M/L)I ≤ 1.9h100 ≡ 1.3h70. An independent study using

population synthesis models (Boissier and Prantzos 2000) gives (M/L)I =

1.0–1.3h100 ≡ 0.7-0.9h70. Finally, Sommer-Larsen and Dolgov (2001) use the

I-band Tully–Fisher relation of Giovanelli et al. (1997) and their warm dark

matter simulations to limit the mass-to-light ratio in this band to (M/L)I

= 0.6–0.7h60±10. These independent results fit well with the value found in

this analysis.

By fitting an exponential curve to the light profile, outside of the bulge

region of influence, the light contribution of the disk can be removed and the

bulge mass-to-light ratio calculated. This technique assumes that the disk

light follows the exponential decay to the centre of the galaxy and is not

disrupted by the other mass components in that region. The light emitted

within the image region is ignored, as this is contaminated by quasar light.

The final profile for the best-fitting bulge model (Σbg = 9.53 × 105 M�pc−2)

is displayed in Figure 2.7. This profile is reasonably flat over a large range

of radii, but increases sharply for r > 3 kpc. This is the beginning of the

region where both the disk and bulge contribute significantly to the light.

Here, the disk exponential profile is a poor fit to the light profile and the

disk subtraction removes too much light. This indicates the inadequacy

of the two profiles to accurately account for the mass. It is possible the

inclusion of the bar would add mass to the inner regions of the bulge area (its

effectiveness is negligible beyond r ∼3 kpc) and increase the mass-to-light

ratio. This could account for the slope at r > 3 kpc. Unfortunately, as the

bulge and bar occupy the same radial regions, they cannot be deconvolved

as the disk can. Taking the data from radii r = 0.7–3.3 kpc, the average



36 2237+0305: Introduction

Figure 2.7: I-band mass-to-light ratio profile for the bulge component. The
central 700 pc have been omitted to reduce the effect of contaminating
quasar light. The sharp rise at r ∼3.3 kpc is the region between the disk and
bulge where the mass distributions fail to fit the light profile adequately.

mass-to-light ratio is,

(M/L)I,b = 2.9 ± 0.5h70, (2.11)

where b denotes the bulge component. Fukugita et al. (1998) find a value of

(M/L)B,b = 6.5+1.8
−2.0 corresponding to (M/L)I,b = 5.0+1.4

−1.5 in the I-band using

synthesis models and data from other groups. This determination agrees

with the results presented here. It is encouraging to note the higher mass-

to-light ratio in the older population bulge stars than for the younger disk

stars.

2.4.3 Maximality

Maximal disks, whereby the disk contributes the majority of the rotation

(75–95%) at the radius of its maximum circular speed, have been used in

many studies to investigate the dynamics and structure of galaxies, as a

means of deconvolving the disk from the dark matter halo. Physically, max-

imal disks have been found to be inconsistent with observations of gas mo-

tions in spiral galaxies combined with theoretical models (for example, Kranz

et al. 2001). Observations of spiral galaxies have challenged the suggestion

that disks are maximal owing to the need for a significant dark matter halo
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(for example, Bottema 1997). Weiner et al. (2001) used observed velocity

dispersions and gas dynamical simulations to reproduce the observed bar

and spiral arms of a large spiral galaxy. They found the disk was maxi-

mal (80-100%) to high confidence. Conversely, Courteau and Rix (1999)

find that their sample HSB galaxies are sub-maximal to high confidence us-

ing residuals from the Tully-Fisher relation and adiabatic infall of luminous

material into dark matter potentials. Bottema (1993) used stellar velocity

dispersions to infer the contribution from stars to the rotation curves in

twelve disks. He finds vstars/vtotal ∼ 63±10 per cent, below maximal accord-

ing to the definition of Sackett (1997). The wide range of results suggest

that there is a continuum of the degree to which the disk contributes to

the mass, dependent upon, among other factors, galaxy morphology. The

presence of a dominant bulge has also confused the issue somewhat, whereby

the bulge is strictly maximal, but the disk may be insignificant.

The small variation in disk contribution to the 2237+0305 rotation curve,

as demonstrated in Figure 2.3, provides a good determination of the degree

of maximality in this galaxy. The overall rotation curve, although not con-

strained observationally in the region where this calculation is made (the disk

maximum at r ∼ 2.2rd), is also reasonably tight given the HI constraints

and the profiles used.

The contribution of the disk to the rotation has already been determined

by its mean central surface mass density (Σdk = 506±30 M�pc−2). This

corresponds to a maximum rotation of vdisk(2.2rd) = 163±5 kms−1. The

maximum rotation is calculated to be vtotal(2.2rd) = 288±5 kms−1. The

percentage contribution of the disk to the rotation, the degree, is therefore,

vdisk(2.2rd)

vtotal(2.2rd)
= 57 ± 3% (2.12)

This value fits well with those found by Bottema (1993) and Kregel

(2003), and is well defined for the solutions presented in this work. This

disk is clearly sub-maximal.

2.4.4 Flux ratios

The flux observed from each image in a gravitationally lensed system is

a direct measure of the magnification in that region of the lens plane. A

comparison between the flux ratios of the images observed in 2237+0305 and
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Image Flux Ratio (Agol et al.) Flux Ratio (this work)

A 0.9±0.1 0.7±0.1
B 1.0 1.0
C 0.5±0.1 0.6±0.1
D 0.9±0.1 1.0±0.1

Table 2.7: Infrared flux ratios (relative to the B image) of the A, C and
D lensed images, calculated from the fluxes of Agol et al. (2000) and the
corresponding results from this work.

those predicted by the solutions can further act as a check on the results.

Observed fluxes in individual images are a combination of magnification

due to microlensing, macrolensing and intrinsic variability coupled with time

delays. Agol et al. (2000), however, have measured IR fluxes (8.9 & 11.7µm)

for the four components and from these the ratio of fluxes can be calculated.

In this region of the spectrum, microlensing events are not observed and it

is therefore postulated that these observations sample an extended region of

the source. In addition, the infrared fluxes are not as sensitive to the dust

reddening effects of optical light travelling through the galaxy. Thus the IR

fluxes should measure the macro-magnification. These fluxes, relative to the

B image, are displayed in Table 2.7.

The flux ratios were calculated from the results by taking the ratio of

the magnification for each of the images relative to the B image. The mag-

nification is calculated by taking the ratio of areas of triangles around the

images mapped from the image to the source plane. They were calculated

from the best-fitting solution of Table 2.2 and are displayed in Table 2.7.

These results are consistent with the observations within 1σ uncertainties.

2.5 Technique improvement

The use of a grid to calculate the bending angles is an inferior technique to

an analytic expression, whereby the discrete summation over surface area

becomes a continuous integral. Keeton (2001) presents a set of such expres-

sions for commonly used surface mass distributions. Many of these require

a numerical integral to be performed, however they are useful for two rea-

sons: (i) they easily allow a standardised application of such parameters as

ellipticity, which is critical for comparing different results; and, (ii) they are

well-defined, removing the discreteness problems associated with summa-
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DISK M/L = free BAR M/L = free
rd = 11.3±1.2′′1 e = 0.641

i = 60◦4 PA = 39◦2

PA = 77◦2

BULGE M/L = free DM HALO M/L = free
rb = 4.1±0.4′′1 SIS rc = free
e = 0.313 eNFW rh = free
PA = 77◦2 e = free

Table 2.8: Fixed and free parameters and their source for the mass models
of the four major components. The label ‘free’ refers to free parameters in
the model and rc and rh denote the core radius and scale length respectively.
1Schmidt 1996, 2Yee 1988, 3Racine 1991, 4Irwin et al. 1989.

tions.

There are two primary differences between the mass models used in the

above analysis, and the ones used with this new technique: the disk is

modelled as a thin distribution, i.e. with no depth to integrate through;

and, a flattened NFW profile is also explored for the dark matter halo mass

distribution.

The disk is modelled as a thin structure with an exponential surface

density profile, the bulge with a de Vaucouleurs profile and the bar as a

Ferrers ellipse, in line with the previous work. The parameters characteristic

of these models have been taken from previous observational studies and are

presented in Table 2.8.

With the known image positions and rotation curve information, there

are ten constraints on the model. For the softened isothermal sphere, there

are seven free parameters and for the flattened NFW there are eight.

2.5.1 Inversion method

The unknown parameters are varied to fit both the image positions and ro-

tation curve points using a basic minimisation procedure and the χ2 statis-

tic. The disk and bulge scale lengths are also allowed to move within their

1σ uncertainties in order to explore the parameter space adequately. The

bending angles for each mass component are computed and their relative

contributions (mass-to-light ratios) varied to fit the constraints. Solutions

with unphysically large or small values for the mass-to-light ratios were dis-
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SIS eNFW

M/Ldisk,I 0.74±0.09 0.81±0.09
M/Lbulge,I 1.90±0.09 1.83±0.09
ehalo 0. 0.01
Scale rc = 1.03±0.02kpc rh = 12.0±0.6kpc
χ2 1.4 1.0
χ2

accept 1.5 0.9

Table 2.9: Best fitting parameter values for the two halo density profiles.
Note the similarity between mass-to-light ratio values and the almost spher-
ical NFW halo. The SIS has e = 0 by definition. The final row gives the 1σ
acceptable χ2 value.

counted. Since most components contribute shear as well as convergence to

the lensing configuration, degeneracies exist between some parameters.

2.5.2 New results

Statistically acceptable solutions were found for both dark matter halo den-

sity profiles. The degree of ellipticity required for the flattened NFW profile

was very small and consistent with zero. Both solutions provided similar

convergence within the image regions and therefore allowed the same com-

bination of the luminous mass components.

For 3 (2) degrees of freedom, an acceptable χ2 value at 1σ confidence is

1.5 (0.9). Table 2.9 shows the best-fitting parameters for the models. It is

evident from the similarity of the mass-to-light ratios and the small NFW

flattening that these two halo profiles would contribute comparable conver-

gence and shear to the lensing. Figure 2.8 shows the rotation curve of a

galaxy with the best-fitting parameters for the softened isothermal sphere

halo and luminous components. The bulge component clearly dominates the

centre of the galaxy, providing the majority of the dynamical support within

the image region. In the outer regions of the galaxy the dark matter com-

ponent dominates, as expected from results of previous work deconvolving

galactic rotation curves. The best-fitting rotation curve using the flattened

NFW dark matter halo is essentially the same.

The disk is clearly sub-maximal according to the definition of Sackett

(1997), however the importance of the bulge in this system should not be

forgotten. This early-type spiral is not the ideal system for studying the
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Figure 2.8: Best-fitting rotation curve based upon rotation points from HI
observations and image positions for a softened isothermal sphere dark mat-
ter halo. The solid line is the total rotation curve, the dash-dotted line is
the dark matter halo, the dashed line is the bulge, the dotted is the disk
and the long-dashed is the bar.

importance of disk stellar support as the bulge clearly dominates the disk.

Comparison of the flux ratios shows excess flux in one of the images with

both profiles for the dark matter. This result is quite robust and suggests

an underlying problem in the mass distribution.

The one completely unknown component of the mass is the density pro-

file of the dark matter halo. The best-fitting disk M/L and the bar mass

agree with other estimates. If the bulge is too small in the models then

it would appear the dark matter distribution would need to be changed to

accommodate this. The most likely outcome is a halo with little contribu-

tion within the image region but sufficiently flattened as to counteract the

increased torque from the bulge. Without further information, this is purely

speculation.

Additional kinematic information can help to answer these remaining

questions. With only rotation data for the outer galaxy, critical regions of

the rotation curve are unknown. Well measured points in the galactic centre

will tightly constrain the allowed dynamics in the important image region, as

shown in Figure 2.9, which compares the expected observed rotation curve

for this galaxy with a maximal bulge and the two different halo profiles. This
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Figure 2.9: Comparison of expected rotation curves for a maximal bulge
(M/LI=3.0) with the two different halo profiles. The lower dash-dotted line
shows the contribution of the SIS with rc=5kpc and the upper, a spherical
NFW with rs=12kpc. The dashed line shows the bulge contribution. The
two solid lines are clearly different in the inner regions.

solution does not fit the image positions, but shows the possible difference

in the inner rotation curve. It is this splitting of curves that will be probed

with spectroscopy of the galaxy from the Keck telescope (Chapters 3 and 4).

With this improved analysis, statistically acceptable solutions are obtained,

but the flux ratios do not fit.

2.6 Implications for the dark matter halo

The SIS halo model is a generic profile that is analytically simple but dis-

agrees with the results from N -body simulations (it is possible, however,

that the simulations may not reflect nature faithfully, Trott and Melatos

2005). It does, however provide a mass profile with varying slope, and this

is a useful attribute if one wishes to study the gradient of the mass distri-

bution, and corresponds loosely to the solution for secondary infall onto a

spherical perturbation (Bertschinger 1985).

The best-fitting solutions for the mass distribution of this galaxy are not

adequate fits — either because the χ2 is too high, or the flux ratios are not

consistent with observations.
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The rotation curve is rising at the outer regions instead of falling, and the

modelled images are not within the errors of the measured positions. A halo

with a smaller core would alleviate the former problem but require a change

of the other mass distributions to address the latter. The mass-to-light

profile of the disk suggests an increase in the disk scale length. Such a move

would change the shear introduced by the disk. The size of the core region is

not consistent with the cuspy central regions of CDM profiles from N -body

simulations. In order to reduce the χ2 and find an adequate solution, further

rotation data are required. The more kinematic data available, particularly

in the image region, the more discriminating power one has between models.

Until more data are obtained, it is not worth trying to fine-tune the halo

profile to fit the parameters more closely. If the error bars on the HI rotation

points are incorrect, the rotation curve may become quite consistent with the

observations (the observations by Barnes et al. 1999, were undertaken with

the VLA C array, a compact configuration with low angular resolution), but

the flux ratios will still not fit. Higher resolution observations will provide

tighter constraints on the model.

It is worth remembering that the halo is assumed spherical in this work

because not enough information is known about the system to warrant a

more complicated model. As discussed before, numerical simulations of

purely collisionless particles result in triaxial halos, whereas studies of our

own Galaxy show the halo to most likely be close to spherical (Ibata et al.

2001). Flattening the halo allows more projected mass to lie within the

image region and therefore reduces the contribution from the visible com-

ponents. Given that the spherical halo is found to contribute <10 per cent

of the mass within the image region, playing with the ellipticity with the

amount of information available would not provide any more meaningful

information about the galaxy.

How much does one force the galactic mass distribution to be of a given

form, by modelling it with parametric models, as opposed to directly inves-

tigating the light distribution? Parametric models assume a given structure

for a mass component. If this model does not faithfully represent the real

structure of the component, systematic errors are introduced into the mod-

elling. These errors can be quantified either by trying many different models

and comparing results, or by assuming a constant mass-to-light ratio and

calculating the bending angles from the observed light curves alone (this is
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only useful for luminous components).

The lensing probes the projected mass enclosed within the images, and

the quadrupole moment of the lens. Wambsganss and Paczynski (1994)

showed that for a given assumed power-law surface mass density, the index

is degenerate with the external shear in the 2237+0305 system. Such degen-

eracies can be broken with use of the flux ratios of images (which probe the

gravitational potential) and time delay measurements. For this system, the

time delay is expected to be short [∆t ∝ (1+zd)DdDds/Dsb
2 ∼1 day, where

b ∼ 1′′ is the characteristic size of the image region] and is unmeasured due

to the confusion of microlensing flux variations (the flux ratios are somewhat

contentious, as discussed earlier).

In 2237+0305, the lensing probes the mass enclosed within the images

extremely well, rather than the slope of the profile in the image region (which

is degenerate with external shear). This is because all images effectively lie

at the same radius and so the shape of the profile can be changed and the

convergence remains the same (Kochanek 2004). In other systems with im-

ages at different radii, the dependence on the mass slope is stronger because

the locations of two of the images can be used to probe the structure in

the annulus between them. In this way, systems with extended images that

lie over a large range in lens galaxy radius, can provide information about

the mass slope in that region (e.g. 1549+3047, a lensed radio lobe showing

images in the radius range 0 < r . 2′′, Lehar et al. 1993).

The lensing cannot provide information away from the image region,

since the photons do not probe these paths. The distribution of matter (i.e.

clumpy or smooth) internal to the images (internal shear) is irrelevant to the

lensing, except on large scales — the overall potential’s shape and depth.

Similarly, matter outside of the images (external shear) can affect the image

locations, but cannot be characterised by the lensing except for as an overall

external shear. Kinematic information is required away from the images.

As most lens galaxies have images lying ∼5 kpc (∼1′′, zd=1) from the

galactic centre [most lens galaxies lie within 0 < zd < 1 since, for a SIS

lens, α = 1.2′′Dds/Ds (σ/200kms−1)2 and as zd → zs, Dds << Ds, mak-

ing the images unresolvable for higher redshift lens galaxies], the lensing

can often probe a region where the light and dark matter have compara-

ble contributions. In the case of 2237+0305, the images primarily probe

the stellar bulge, and so can provide most information about it. Only the
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lensing combined with well-sampled kinematic information can provide any

larger scale information about the galaxy. Mass profiles must always be

assumed in point-source lenses, (unlike extended-source lenses, where many

lines-of-sight provide significantly more information), but one must be care-

ful when quoting random uncertainties on model parameters to not forget

the systematic uncertainties introduced when one uses parametric models.

This point is clear in Figure 2.9 where the two different halo profiles, NFW

and isothermal sphere, produce equally good fits to the image positions and

HI rotation points, because they are able to be tuned to fit at these two

different radii. Thus, the use of high quality kinematic data in the mod-

elling can improve the results by providing additional information that is

dependent upon the mass structure of the system.

2.7 Rotation curve measurements

Additional kinematic information is required to remove the strict reliance

on parametric models of the dark matter halo, and hence to fully explore

the different models proposed in the literature. A fuller rotation curve is the

first obvious step towards achieving this, and attempts were made to obtain

one, as discussed below.

2.7.1 Optical spectrum with the ANU 2.3m

With little spectral information available for the lensing galaxy itself (most

previous work concentrated on the quasar spectrum), the availability of

spectral features needed confirmation before a rotation curve could be at-

tempted. 2237+0305 is a barred Sa–Sab type galaxy, the spectra of which

are characterised by small equivalent widths of the Balmer emission lines,

and many absorption features (Kennicutt 1992; Slonim et al. 2001). Given

these previous results from this morphological type, one would not expect

to find any emission lines in the optical band.

To confirm this, and attempt to identify strong absorption features, the

lensing galaxy was observed over two nights with the 2.3m MSSSO telescope

at Siding Spring Observatory in 2002 July. The Double Beam Spectrograph

was used to obtain both red and blue spectra, and the 1200 lines/mm grating

employed for high spectral resolution (second order used for the blue arm).



46 2237+0305: Introduction

Figure 2.10: 2400s red spectrum of the central arcsecond of the galaxy from
the 2.3m telescope using the 1200 lines/mm grating. The feature located
at ∼ 6850Å is due to sky absorption. There are no directly visible features
in this spectrum, although there is possibly Hα absorption at ∼ 6820Å.
However, this would signal the presence of hotter stars in the bulge than
G-type.

Four observations were undertaken of the galaxy in dark time, two with

2400s integration time, and two with 1800s. The seeing was poor (∼ 2′′)

with high humidity in the dome (∼ 95 per cent), making observing difficult.

The red arm gave a spectral resolution of ∆v = 48 kms−1 (∆λ=950Å),

and the blue, ∆v = 29 kms−1 (∆λ=440Å), centred upon 6830Å and 5200Å

respectively. The spatial resolution comprised 532 pixels over 40′′, with a

resolution of 0.07′′/pixel, corresponding to ∼70h−1
70 pc at z=0.039, and the

slit was set to 1.0′′, balancing maximum signal and optimal resolution, given

the poor conditions, with an attempt to retain some degree of good spectral

resolution and avoid quasar contamination.

The resulting spectra for the central 1′′ of the galaxy are plotted in

Figures 2.10 and 2.11. They are extremely noisy, clearly displaying only the

CIII] line from the quasar images. There are hints of possible absorption

lines, based upon the expected features for the dominant bulge stars (Giant

G, K and M-type). No emission lines are expected for these cool stars (strong

Balmer lines are visible in absorption for hot O and A-type stars, but not

for cooler stars), but Mg, Ca and Fe features are common (neutral metals,
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Figure 2.11: 1800s blue spectrum of the central arcsecond of the galaxy from
the 2.3m telescope using the 1200 lines/mm grating in second order. The
CIII] semi-forbidden line from the quasar images is visible as the peak at
∼ 5140Å, but the spectrum is too noisy to identify any galactic absorption
features.

Carroll and Ostlie 1996).

Unfortunately, these spectra were not of sufficient quality to calculate

a rotation curve, or, more basically, identify with certainty any absorption

lines to take to a larger telescope.

2.7.2 Neutral hydrogen rotation curve with GMRT

The data cube presented in Barnes et al. (1999) from the VLA shows the

existence of neutral hydrogen in the outer regions of the galaxy. A higher res-

olution and sensitivity observation of the system should yield much tighter

kinematic constraints to better quantify the outer rotation curve. We pro-

posed to use the newly available Giant Metrewave Radio Telescope (GMRT),

located close to Pune, India, to undertake spectroscopic observations. Ob-

servations were carried out in 2002 April.

GMRT is a 45 element interferometric array comprising 30m dishes in a

pattern optimised for good angular resolution and spatial sensitivity. The

longest baselines are ∼25km, and the central 1km is packed with 29 of the

antennae, for excellent sensitivity at low resolution.
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2237+0305 was observed at 1370MHz (21cm line at 11695kms−1) for

20 hours, with 128 channels spread over 8MHz, producing 13.2kms−1 ve-

locity resolution. These observations were based upon quoted sensitivity

levels which would produce an rms noise level of 0.15mJy/beam. Barnes

et al. (1999) measured a total integrated line flux of 1.0±0.1 Jykms−1 over

550kms−1 and with a spatial diameter of 70′′ with the VLA-C array. With a

synthesised beam of 2′′ and 550kms−1 velocity width, and using the moment

map produced by Barnes to identify the area over which 21cm emission is

observed, the expected signal is ∼0.2 mJy/beam/62.5KHz channel. This

does not provide sufficient signal-to-noise (∼2), but spatial binning of the

spectrum during data reduction will improve results.

The observations were marred by instrumental problems, including power

failures that led to more time being allocated to the project. Additionally,

most of the long baseline antennae were offline for some or all of the observa-

tions, reducing the collecting area by one third. The data were also largely

affected by interference, with almost ten per cent of the data discarded.

In addition to these problems, at this time the GMRT was not operating

at specified sensitivity, and careful data reduction with the AIPS package

was not able to reduce the rms noise below ∼2 mJy/beam, unacceptably

high for a galaxy with such low HI emission. As a result, no kinematic

information came from these data.

2.8 Conclusions

A study of the structure of galaxy 2237+0305 was undertaken using pho-

tometric and gravitational lensing constraints. The combination of these

techniques allows the problems related to the disk/halo degeneracy and the

question of maximality of the disk to be overcome, provided enough kine-

matic information is known about the system, and assuming parametric

models for the mass components.

The galaxy is adequately modelled with four mass components, a central

bar, stellar disk, bulge and dark matter halo. The bulge contributes ∼85

per cent of the projected mass enclosed within the image radius, and is

thus the principal component to which the lensing is sensitive. The disk,

bulge and bar all contribute shear, while the assumption of sphericity for

the dark matter halo seems adequate for this analysis with the observational
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information available.

Within the visible radius of the galaxy (r < 30h−1
70 kpc), the dark matter

halo contributes ∼60 per cent of the total mass. The potential existence of a

core region in the softened isothermal sphere halo is suggested by the results,

but both a SIS and NFW profile produce equally good fits to the data. The

best reconstruction of the source position occurs for a SIS halo with a core

radius of 1.03±0.02kpc, or an NFW halo with e = 0 and rh=12.0±0.06kpc.

The disk is found to be sub-maximal to 5σ with an average contribution

of 57±3 per cent to the rotation at the maximum of its circular speed. This

clearly demonstrates the dominance of the dark matter halo in the galactic

mass. The disk and bulge I-band mass-to-light ratios were calculated using

the mean and standard deviation of the potential solutions. They were found

to be (M/L)I,d = 0.74±0.09h70 and (M/L)I,b = 1.90±0.09h70, respectively

(SIS model). The flux ratios between the quasar images calculated from

their magnifications were found to be consistent with mid-infrared data, in

all but one image.

The above results rely heavily on the parametric models assumed for

the mass components, and therefore further information is required (most

readily available as kinematic information) to remove some of the reliance

on these models, and more fully probe the galactic mass structure. Conse-

quently, with the addition of rotation curve information, the dark matter

profile can potentially be found uniquely. Until such information is available,

the system remains ill-constrained and unsolved.

Kinematic information was sought in both the optical and radio wave-

bands. Optical spectra taken with the Double Beam Spectrograph on the

MSSSO 2.3m telescope in 2002 July were not of sufficient quality to identify

spectral features worthy of analysis. This was due to a combination of small

telescope aperture and bad seeing at the site.

Neutral hydrogen line emission at 21cm from the galaxy was observed

at GMRT, India in 2002 April. The combination of loss of one third of

available antennae (including most long baselines) and the poorer than ex-

pected sensitivity performance of the telescope, led to no useful data being

obtained.
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CHAPTER 3

2237+0305: Keck Data

The Echelle Spectrograph and Imager (ESI) on the Keck-II telescope is used

to measure a high spectral and spatial resolution spectrum of the galaxy

2237+0305 and the lensed quasar images. The data are split into ten echelle

orders giving a spectral range of λ = 4000Å – 10000Å at a velocity resolution

of 36.1 kms−1. These data are used to extract a rotation curve and velocity

dispersion profile for the galaxy, based upon measurements of the Mgb,

FeIb and Nad absorption lines. The results are consistent with previous

measurements for the system.
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3.1 Introduction and past observations

2237+0305 has been observed many times since its discovery as a candidate

lens in 1985. Previous published spectra of 2237+0305 have either concen-

trated on the quasar spectrum, or only presented a small wavelength range

for the galaxy spectrum. The paper presenting the discovery of the system

as a lens, Huchra et al. (1985), displayed a quasar spectrum taken with

the MMT and featured both the CIV and CIII] broad lines. In addition,

they identified the H+K break at ∼4100Å and Mgb absorption (5381Å).

This spectrum was not of sufficient quality to identify any further features,

but was successful in its primary aim: to confirm the system as a lens.

Foltz et al. (1992) observed the galaxy to determine a velocity dispersion

for the bulge. They identified Mgb and FeI absorption features to use in

their analysis, but presented a spectrum over only a small wavelength range

(5100–5550Å). Lewis et al. (1998) concentrated their WHT observations

around the quasar emission lines to investigate variations between the four

images, thereby inferring microlensing effects (line and continuum regions

are expected to behave differently under microlensing conditions because the

flux emanates from regions of different source size). Most recently, Rauch

et al. (2002) identified absorption lines in the spectrum from intervening

(between lens and source) objects using the HIRES spectrograph on Keck.

These spectra display high resolution profiles of the absorption lines of the

intervening systems and as such do not concentrate on the spectrum of the

galaxy as a whole.

As discussed in Chapter 2, a high resolution optical spectrum of 2237+0305

is required for a comprehensive analysis of the mass distribution of the sys-

tem. The rotation curve needs to be well-sampled, both inside and outside

of the image region for the kinematic and lensing information to complement

each other. In addition, a large telescope is required with good seeing to ob-

tain this (see discussion in Chapter 2). The ESI instrument on Keck meets

these requirements. The site seeing is generally very good (better than 1′′,

required for independent rotation curve points within the images) and the

large collecting area provides high signal-to-noise in the echelle mode. The

high spectral resolution produces kinematic data with small uncertainties,

thereby improving the power to discriminate between different mass models.



3.2 Observations and data reduction 53

Figure 3.1: Image of the ESI CCD showing the ten wavelength orders (lowest
to highest, left to right) for one 1200s exposure along the galactic major axis.
Cosmic rays and sky lines are visible across the spectra.

3.2 Observations and data reduction

2237+0305 was observed as part of the Lenses Structure and Dynamics

Survey (LSD, e.g. Koopmans and Treu 2002), a project aiming to measure

stellar kinematic information in lens galaxies to better model them and break

degeneracies in their mass models. The data were taken on 2001 July 21,

23 by Leon Koopmans, Tommaso Treu and Chris Fassnacht with the Keck

II telescope on Mauna Kea, Hawaii. The Echelle Spectrograph and Imager

(ESI) instrument was used in echelle mode, providing high resolution (R ∼
30000) spectra in the wavelength range λ = 3900 – 10900Å over ten echelle

orders.

The ESI instrument on Keck II provides a constant velocity dispersion

across all orders of 11.9 kms−1pixel−1, and a spatial resolution along the slit

of 0.154 arcsec/pixel. The spectral resolution varies with wavelength from

∼ 0.16 – 0.3 Å/pixel, depending on the order, but is dependent upon the

slit width (the galaxy was observed with slit width 1.25′′ giving ∆v=36.1

kms−1pixel−1).

Figure 3.1 displays the CCD for one 1200s exposure along the major

axis, showing the ten curved wavelength orders, as well as cosmic rays (bright

points) and sky lines (horizontal emission lines in spectra). Some absorption

features are also visible in the spectra, although many are sky absorption

rather than galactic. The spectra need to be separated, rectified to remove

their curvature, cosmic ray rejected and sky subtracted. The different ex-

posures can then be combined into a single 2D spectrum (wavelength versus

position along the slit).

The slit width was set to 1.25′′ for greater signal, and the seeing was
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Date Object Type PA (◦) Slit Position Slit Width Exp. Time (s)
July 21 2237+0305 - 65 5′′ offset 1.25′′ 1200
July 21 ′′ - 155 5′′ offset 1.25 1200
July 21 ′′ - 155 centred 1.25 1200
July 23 ′′ - 65 centred 1.25 1800
July 22 HR14 K2III - centred 0.3 4
July 22 HR19 K0III - centred 0.3 4
July 22 HR224 K5III - centred 0.3 1
July 22 HR22 G9III - centred 0.3 2
July 22 HR279 G7III - centred 0.3 2
July 22 HR40 G0III - centred 0.3 4
July 22 HR4 G5III - centred 0.3 4
July 22 HR60 G8III - centred 0.3 3

Table 3.1: Observational parameters for G2237+0305 and template stellar
spectra (Harvard Revised Number, HR). The galaxy spectra were taken
∼10◦ rotated from the major and minor axes, and two were observed with
the galaxy offset 5′′ from the slit centre in order to sample the outer regions
on one side.

0.6′′ on both nights. Bias frames were taken at the beginning and end

of each night, as well as Quartz and dome flats on July 21, and sky and

dome flats on July 23. Three wavelength calibration arcs were taken and a

spectrophotometric standard star observed.

2237+0305 was observed along perpendicular directions, sampling the

major and minor axes and the locations of the lensed quasar images. Table

3.1 summarises the key observational data for the galaxy. Note that the

galactic major axis is at a position angle of 77◦ (measured East from North).

In addition to the galactic exposures, template stellar spectra are re-

quired to measure the rotation and velocity dispersion of the galactic spec-

tral features. Eight stars of contiguous stellar type were observed and their

parameters are also shown in Table 3.1. The bulge of the galaxy is primarily

observed in these observations, and so the template spectra are of old, red

stars expected in such an environment. The I-band images of 2237+0305

presented in Yee (1988) show the bulge to be dominated by old and red

stars with (g − r)=0.58 (V – R=0.9, Windhorst et al. 1991) corresponding

to Giant K0III–K5III stars.

The ESI observations require some special preparation and calibration

before they can be combined and used for kinematic analysis. The calibra-

tion process undertaken includes the following steps:

• Bias subtraction — removes any dark current contribution to the sig-
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nal,

• Flat fielding — removes response function of CCD to a uniform illu-

mination of incident light,

• Rectification — the curvature of the spectra, seen in Figure 3.1 is

removed,

• Cosmic ray rejection — removal of signal spikes due to cosmic rays,

• Sky subtraction — background influence of the sky is subtracted using

sky flats.

Many of these steps were performed by the package EASI2D, which is

developed by the LSD group and David J. Sand (Sand et al. 2004) for easy

extraction of echelle orders.

Individual observations were then aligned with the IRAF package imshift

and combined with imcombine (the package imexam was used to find the

amount by which the spectra should be shifted). The spectra are not flux

calibrated (spectrophotometric standards were observed, but flux calibration

is not required for the kinematic analysis).

3.3 Optical spectrum of 2237+0305

As displayed in Figure 3.1, the galaxy appears to occupy only the central

regions of the slit. Imaging observations (e.g. Yee 1988) show the optical

galaxy to extend well beyond 10′′, however the surface brightness rapidly

decreases below the sky background, and it is not observable in these high

resolution spectral data with a slit aperture reducing the photon counts. As

such, only the central regions of the galaxy are available for measurement

of stellar kinematics. Figure 3.2 shows a slice through the spectrum (in a

continuum region of Order 5) along the slit. The galaxy is prominent in the

central few arcseconds, but rapidly disappears below the sky background

at a radius of ∼3′′, although the slit itself is 20′′ long. The central peak is

the galactic nucleus, however there is a feature in each wing of the galaxy

profile, corresponding to two of the lensed quasar images. With the large

slit width used and the 0.6′′ seeing, one would expect contamination from

the quasars in the spectra, as their flux is comparable to that of the galactic

centre.
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Figure 3.2: Profile of the major axis of the galaxy plus quasar images along
the slit for Order 5. The central peak is the galaxy centre, and the two fea-
tures in the wings correspond to the quasar contamination. Only the central
few arcseconds have sufficient signal to be useful for kinematic measurements
(1′′ = 0.7kpc).

From the data reduction performed above, the spectra of each order can

be presented and lines identified to measure the stellar kinematics. Fig-

ures 3.3–3.12 show the ten spectral orders by averaging the central four

arcseconds in order to increase the signal-to-noise ratio. Four arcseconds

corresponds approximately to the region over which S/N > 5.

Prominent spectral features are marked on the spectra. The line-of-sight

absorption systems, reported in Rauch et al. (2002), between the lens galaxy

and background quasar are also confirmed in these spectra. There are no

obvious galactic emission lines, as expected from an old stellar population.

The Hα line (6821Å observed) is partly obscured by the B-band atmospheric

water vapour absorption line in lower resolution spectra (see Section 2.7.1),

however our higher resolution observations can separate the two lines and

Hα emission is not found to be present. The broad emission lines of the

lensed quasar images, CIV (4175Å), CIII] (5145Å) and MgII (7541Å) are

prominent, with CIV suffering from sky absorption (see also Huchra et al.

1985). Table 3.2 shows the wavelengths of the lines located in the spectra
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Figure 3.3: Order 1: sky-subtracted 2400s spectrum of 2237+0305 taken
at a position angle 12◦ clockwise from that of the major axis. A defect
at ∼4170Å, due to sky lines, has been interpolated. Both the Ca H&K
absorption lines are seen here, as well as FeII absorption from a background
absorber at z=0.566 (Rauch et al. 2002).

Ca I

Artifacts

Figure 3.4: Order 2: sky-subtracted 2400s spectrum of 2237+0305 taken at
a position angle 12◦ clockwise from that of the major axis. CaI absorption
in the lensing galaxy is shown here. The large feature at 4400–4550Å is an
artifact of the rectification process in the EASI2D routine.



58 2237+0305: Keck Data

Figure 3.5: Order 3: sky-subtracted 2400s spectrum of 2237+0305 taken at
a position angle 12◦ clockwise from that of the major axis. The two apparent
absorption features at 5000-5100Å are again due to incomplete rectification
of the echelle orders.

FeII
z=.972

MgI

CIII

Ηβ

Figure 3.6: Order 4: sky-subtracted 2400s spectrum of 2237+0305 taken
at a position angle 12◦ clockwise from that of the major axis. The quasar
CIII] semi-forbidden line is the strong peak in the centre and MgIb and Hβ
absorption by the lensing galaxy are visible. The FeII absorption feature is
consistent with the z=0.972 absorber proposed by Rauch et al. (2002).
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Fe I

Mg Ib

Figure 3.7: Order 5: sky-subtracted 2400s spectrum of 2237+0305 taken at
a position angle 12◦ clockwise from that of the major axis. The FeI and
MgIb lines used in the kinematic analysis are shown in this order.

Na Id

Figure 3.8: Order 6: sky-subtracted 2400s spectrum of 2237+0305 taken
at a position angle 12◦ clockwise from that of the major axis. The strong
sodium absorption feature, Nad, is used in the kinematic analysis.
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Ηα

B−band
sky absn

Figure 3.9: Order 7: sky-subtracted 2400s spectrum of 2237+0305 taken at
a position angle 12◦ clockwise from that of the major axis. The expected
Hα absorption at 6820Å is partly obscured by sky lines.

MgII
Sky

Figure 3.10: Order 8: sky-subtracted 2400s spectrum of 2237+0305 taken
at a position angle 12◦ clockwise from that of the major axis. The red wing
of the quasar MgII emission line is partly obscured by sky lines.



3.3 Optical spectrum of 2237+0305 61

Figure 3.11: Order 9: sky-subtracted 2400s spectrum of 2237+0305 taken
at a position angle 12◦ clockwise from that of the major axis.

Spectral Order Line λrest (Å) λobs (Å) z
1 FeII 2600 4074.5 0.559
1 Ca K 3933.7 4088.9 0.0394
1 Ca H 3968.5 4121.4 0.0385
1 CIV 1549 4173.8 1.694
2 Ca I 4227 4391.4 0.0389
4 FeII 2600 5136.9 0.976
4 CIII] 1909 5147.6 1.696
4 MgIb 5173 5377.2 0.0394
5 FeI 5268 5483.8 0.0410
6 Nad 5896 6130.5 0.0397
8 MgII 2798 7570.0 1.706

Table 3.2: Derived redshifts based upon Gaussian line centres from the
spectra compared with rest values. Rest wavelength values of absorption
features from Cox (2000).

(fitted with a Gaussian to find the line centre), calculated at the galaxy cen-

tre to determine the emitter/absorber redshift. Most lines are well-fitted to

the published galaxy and source quasar redshifts of z=0.0394 and z=1.695,

respectively. The high value for the redshift of the MgII emitter is due to the

sky lines redward of its centre contaminating the fit. Some of the features

identified by Rauch et al. (2002) are also reproduced here. The by-eye iden-

tification of both Hα and Hβ absorption in the galaxy (shown in Figures 3.6

and 3.9) seems premature since both exhibit redshifts too large compared

with the galaxy (z=0.052, 0.042, respectively). This is also potentially due

to inaccurate wavelength calibration of these spectra (although other lines

in Order 4 are well-fitted). Importantly, both Mgb and Nad reproduce the
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Figure 3.12: Order 10: sky-subtracted 2400s spectrum of 2237+0305 taken
at a position angle 12◦ clockwise from that of the major axis. Poor cosmic
ray subtraction produces the narrow features observed here.

galaxy redshift well, although the FeI line produces a redshift that is too

high (this is shown later to be due to the crowding of lines in Order 5, and

the probable misidentification of the strongest line with FeI absorption).

There are also cases of incomplete rectification by the EASI2D reduc-

tion routine in the spectra, where flux leaking from the spectrum produce

unphysical features in the spectra. These features have been identified in

Orders 2 and 3. There is no such problem in the rectification of orders used

in the kinematic analysis.

3.4 Data analysis

Given the lack of emission lines in the spectra of the old stellar population,

strong absorption features need to be used in the kinematic analysis. The

highest signal-to-noise feature in the spectra is the Nad doublet at λ = 5890,

5896Å rest (6125, 6131Å observed). This feature sits in the middle of Order

6, mostly uncontaminated by sky absorption and away from the edges of the

spectrum. In addition, since the spectra are not flux calibrated, it is impor-

tant that the continuum region around the line can be well characterised for

easy removal. This doublet is smeared by the kinematics to appear as one

absorption line in the galaxy. In the templates, where the slit was consider-

ably narrower and the spectra were obtained from individual stars, the two

lines are distinguishable. When the template spectra are Gaussian smeared
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to fit to the galaxy, the lines will combine. Thus, it is reasonable to use

a smeared doublet to measure the kinematics. Similarly, the Mgb and FeI

absorption lines in Order 5 are well sampled, and consistency between the

three leads to more robust kinematic results.

There are suggestions in the literature that the Nad absorption doublet

is contaminated by neutral gaseous sodium in the galaxy ISM (Sparks et al.

1997). This contamination manifests itself as narrow features with equiva-

lent widths correlated with the ISM density, and show similar kinematics to

the stellar component. If Nad is to be used for the analysis, these narrow

lines need to be shown not to contaminate the stellar lines.

Galactic absorption lines are the sum of individual stellar absorption

lines, convolved with their spatial distribution (see Appendix A). The first

and second order moments of the velocity distribution function (averaged

over observing aperture) can be measured by comparing the spectra with

template stellar spectra from stars in the Milky Way. By comparing these

at a range of radii from the galaxy centre, the line-of-sight rotation curve

and velocity dispersion profile can be constructed. One would expect to

see both dispersion and rotation in an early-type spiral such as 2237+0305

with prominent bulge and disk components. In an axisymmetric galaxy,

the minor axis rotation curve should exhibit significantly less rotation than

the major axis since the line-of-sight streaming motion is negligible (rotation

occurs in the plane of the sky rather than along the line-of-sight if the minor

axis is due to inclination of a disk).

The Gauss-Hermite Pixel Fitting Software of R. P. van der Marel (can

be obtained from http://www-int.stsci.edu/∼marel/software/pixfit.html) is

employed to determine the kinematic properties along both the major and

minor axes. This software and the principles underlying it are presented in

Appendix A, including discussion of the preparation of the stellar templates

and the galaxy spectra.

3.4.1 Gaussian fitting parameters

The template and galaxy spectra are now able to be compared using the

iterative fitting method described in Appendix A. Initially, the spectra

will be compared with templates of individual stellar types to identify the

dominant stellar species. Subsequently, linear combinations of templates

can be used to find the best-fitting solution.
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Poly order χ2
√

< (χ2)2 >

2 743 324
3 574 215
4 545 206

Table 3.3: Average and standard deviation of the χ2 fit statistic for three
continuum polynomial orders (Nad line, HR22 template). Orders three and
four both fit well compared with order two, as expected.

Major axis

The Mgb, FeI and Nad absorption features have high signal-to-noise ratios

and can be used for kinematic analysis. The variable parameters used to

find the best-fitting (lowest χ2) solution are the order of the polynomial fit

to the continuum and the spectral type used as the template, as described in

Appendix A. Since the Mgb and FeI lines have different equivalent widths,

a separate fit must be made to both, as otherwise the line strength, γ, will

balance itself artificially between the two real values.

The rotation curves for both echelle orders were found to be quite ro-

bust to parameter variations, however the velocity dispersion profile varies

significantly (> 3σ in some cases) to warrant a search of parameter space

for the best fit. In addition, the fits to the FeI line were found to be con-

taminated — Figure 3.13 displays the best-fitting profiles and shows their

poor quality. The source of the contamination in the line is unknown, but is

probably related to the quasar spectrum interfering with the galaxy’s spec-

trum. (Figure 3.21 shows the spectral environment for both the FeI and

Mgb lines are filled with other unidentified spectral features. These other

features both confuse the fitting routine, and most likely also affect the line

edges, thereby altering the measured dispersion.) The FeI line will therefore

not be used in the analysis.

Figure 3.14 shows the fits using the Nad line, with the HR22 template

and three different polynomial orders — two, three and four. The line centre

seems to be accurately measured in all, evident from the robust rotation

profile, but inaccuracies in the continuum fitting fail to reproduce the line

shape properly. As expected, the order 2 polynomial is not able to produce

an acceptable fit due to its shape limitations. Table 3.3 lists the χ2 for

these three fits. Clearly, orders three and four produce the best results.

Figure 3.15 displays an example of a fit overlaid with the original data, for
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Figure 3.13: Rotation curve and velocity dispersion profile for the FeI line
(template HR14) showing the poor quality of the results. The line appears
to be contaminated, probably by the quasar spectrum.

polynomial order of four.

Variation of the spectral template also produced varying dispersion pro-

files. Clearly, the most physically reliable fits will occur for spectral tem-

plates that reflect the dominant sources of stellar light in the galaxy — in

this case, massive red stars from the bulge. As the templates are drawn from

consecutive stellar types, one would expect them all to form a continuum of

goodness-of-fit, and for a combination of several to produce the best fits.

Each spectral template will be used to determine the kinematic profiles

and their χ2 statistics compared, before a linear combination of the best-

fitting templates is employed to further improve the fit.

Figures 3.16 and 3.17 display the disparity between results for different

templates for the Nad and Mgb lines respectively. Again, the rotation

curves are quite robust, but the dispersion profiles vary dramatically. Table

3.4 lists the average and standard deviations of the χ2 for the different
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Figure 3.14: Rotation curves and velocity dispersion profiles for the Nad line
and the HR22 spectral template for three different continuum polynomial
orders (blue squares=2, green pentagons=3, red triangles=4). The rotation
curve differs very little, but the dispersion profile changes significantly due
to inaccurate reproduction of the line shape.

templates. Each order has a different number of degrees of freedom to

compare with the χ2, as different wavelength ranges were used. In general,

N is the number of pixels in the spectrum used for the fit, minus the fitting

parameters — three for the continuum polynomial fit, and one each for the

overall normalisation, a, and the line strength, γ, (see Eqns [A.1]–[A.2]),

N = ∆λ− L− 2, (3.1)

= 800 − 3 − 2 = 795 (Mgb), (3.2)

= 1200 − 3 − 2 = 1195 (Nad), (3.3)

where L is the Legendre polynomial order. All of the fits produce reduced
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Figure 3.15: Original galaxy data and overlaid spectral template fit for the
Nad absorption line for a continuum polynomial order of four and the HR22
template (middle of the range of best-fitting templates). The line shape is
not well fitted.

Template Stellar Type Mgb χ2 Mgb ∆χ2 Nad χ2 Nad ∆χ2

HR14 K2III 200 61 504 192
HR19 K0III 209 62 598 227
HR224 K5III 200 61 494 191
HR22 G9III 204 62 574 215
HR279 G7III 210 62 614 235
HR40 G0III 215 63 585 221
HR4 G5III 215 63 613 235
HR60 G8III 226 65 611 234

Table 3.4: Average and standard deviation of χ2 statistic for each template
applied to the two spectral orders, Mgb and Nad.
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Figure 3.16: Comparison between three stellar templates for results from
the Nad line (S/N=5, polynomial order=3). These templates correspond
the best-fitting solutions — HR22 (cyan pentagons), HR14 (blue squares),
HR224 (red triangles).

χ2 values less than one. This is not surprising since Equation (3.1) overes-

timates the degrees of freedom in the system because neighbouring pixels

are correlated on the CCD by the Gaussian smoothing applied earlier. As

a rough estimate, N should be reduced by ∼2.9, since this is the smear-

ing applied to the spectra (see Appendix A). The templates with the same

unknown N , however, can be compared with each other, and linear combi-

nations chosen to find the best-fitting profiles.

Two of the solutions for the Nad line fit the data better than the others.

Figure 3.18 displays the χ2 profiles, as a function of galactic radius, for

the three best solutions, demonstrating the superiority of the lowest two in

reproducing the kinematics in the centre of the galaxy. Reassuringly, these

best two also produce the best fits for the Mgb line. A linear combination

of the best three is the obvious first choice for attempting a solution that is
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Figure 3.17: Comparison between three stellar templates for results from
the Mgb line (S/N=5, polynomial order=3) showing the variation in the
dispersion profile (particularly). The templates are HR22 (cyan pentagons),
HR14 (blue squares), HR224 (red triangles). The wide dispersion in points
at ∼1′′ is likely due to contamination from the quasar image.

better again, for both spectral orders. Note that these stellar types are the

colder of the eight templates used here, which is expected due to the older

stellar population. The worst fitting templates are for hotter stars which

are not represented in the bulge of this galaxy.

A combination of the three best-fitting templates are constructed, with

equal weightings for each, and profiles fit to them. For both spectral or-

ders the χ2 is not significantly improved — for the Nad line, it is slightly

worsened (χ2
Nad = 511, χ2

Mgb = 312). A better weighting would promote

the importance of the HR14 and HR224 templates, and reduce that of the

HR22, however, the range of χ2 is so small and they all obey χ2/N≤1 that

all fits are acceptable and similar (fits where one or more of the points did

not converge are not considered satisfactory).
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Figure 3.18: Radial profiles of the χ2 statistic for the three best-fitting
solutions for the Nad line, HR14 (K2III, cross), HR224 (K5III, asterisk)
and HR22 (G9III, diamond). The best two clearly reproduce the central
kinematics better than the others.

For a final comparison, the correct location of the galactic centre must

be determined. Until now, the centre has been taken as the pixel containing

the maximum of the light profile, but this is only accurate to a few tenths

of an arcsecond. Kinematic data from the two sides of the galaxy could

be compared for symmetry, but this would assume a symmetric galaxy —

unlikely given the complex system 2237+0305 is known to be. Instead, the

light profiles (e.g. Figure 3.2) will be fit with Gaussians and the centroid

taken as the galactic centre. The values will vary between orders and within

orders, as the slit projection on the CCD varies with position.

Figure 3.19 displays the light profile in Order 5 at the wavelength of the

Mgb absorption line, and the Gaussian fit to the profile. The central regions

are contaminated by quasar light, as discussed earlier, but the outer edges

fit well. This feature gives confidence in the fit. The Gaussian centre lies

at pixel 68.87, corresponding to a shift of 0.13′′ from the assumed centre.

Similarly, the Nad shift is –0.10′′.

Figure 3.20 compares the shifted rotation curves and dispersion profiles

for the Mgb and Nad lines. The rotation curves provide a satisfactory fit to

one another, but the dispersion profiles are quite disparate. The Mgb profile
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Figure 3.19: Light profile in order 5 at the wavelength of the Mgb absorption
line, and the Gaussian fit to the profile. Although the inner regions are
contaminated by the lensed images, the outer regions fit well. The centroid
lies at pixel 68.87.

shows systematically lower line-of-sight velocity dispersion than the Nad,

except at the quasar image locations, where the Mgb is clearly contaminated.

The Nad results are more uniform over the radius range, suggesting they

are more robust than the Mgb. In addition, the spectral environment of

the Mgb line has a concentration of other spectral features that may be

contaminating the signal (the Nad line, on the other hand, is located in a

smooth part of the spectrum). Like the FeI line, these other features may be

affecting the line shape by impinging on the line wings. Figure 3.21 shows an

example section of the spectrum (∼40Å wide) and fit for both the FeI (top)

and Mgb (bottom) lines, close to the galactic centre. In both spectra, there

are other absorption features close to the line to be measured. The fits to

both lines are affected by the presence and proximity of the other features

and the spectrum in these regions can therefore be classified as suffering

from confusion.

The disparity between the results for these two absorption lines, and the

poor fit to the line profile shown in Figure 3.15, suggests a better analysis

is required. In an attempt to do this, the wavelength range over which the

profile is measured will now be limited to only contain the line. This will
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Figure 3.20: Best-fitting rotation curves, shifted to the best-fitting spatial
centroid and zeropoint velocity, for the two spectral orders (Order 5 blue
squares, Order 6 red triangles). The central rotation curves fit well, but the
outer regions are more disparate, possibly reflecting some contamination
in one or both of the absorption lines. The dispersion profile has similar
attributes.

remove any contamination in the surrounding continuum. In addition, since

the Nad line has the best signal-to-noise ratio, has thus far produced more

stable results, and does not lie in a section of the spectrum with confusion,

it will be concentrated on alone.

A first order polynomial is fit to the continuum since it is effectively

linear over this region (300 pixels, λ = 6110 − 6180Å). The radius range is

also extended beyond the region where the galaxy signal is obvious in order

to include as much information as can be obtained from the data.

Only the four best-fitting templates are fitted to the spectrum, since

these clearly represent the bulk of the stellar emission, and bin the data

radially to 0.6′′ bins, in order for the points to be statistically independent
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Figure 3.21: Spectra and fits to the FeI (top) and Mgb (bottom) lines within
a few hundred pixels (∼40Å) of the line centres. In these regions, the location
and shapes of both lines are confused by other spectral features in close
proximity.

(0.6′′ is the resolution of the observations). Figure 3.22 displays the χ2

statistic as a function of radius for the four templates. Clearly the outer

points do not produce good fits — beyond r∼4′′, the galaxy signal is lost

in the noise. The four templates produce almost equally good fits in the

central regions of the galaxy. Similarly, a by-eye inspection of the fit to the

absorption line (Figure 3.23, HR22 template) shows its clear improvement

over the earlier results (Figure 3.15). The stability and accuracy of the

kinematic results have improved — all templates produce similar fits and,

more qualitatively, the fits look to the eye to be reproducing the line shape

faithfully. Limiting the wavelength range to include only the absorption line

has removed any features in the surrounding continuum that did not have

kinematics matching the stellar motions (e.g. quasar lines).

The rotation curve and dispersion profile for the constrained wavelength

range, after correction for the position of the galactic centre, can be plotted

for each template. Figure 3.24 shows these curves, and demonstrates the

equivalence of the templates — their results are consistent with each other

(note that the radius axis range has increased from previous plots). Within

the region where the galaxy has reasonable signal (r < 4′′), the rotation
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Figure 3.22: χ2 distribution for fits of the four best-fitting templates to the
Nad line for the major axis. All four templates appear to produce equally
good fits. The symbols denote the HR22 template (diamond), HR224 (as-
terisk), HR14 (triangle), HR19 (square).

Figure 3.23: Data and fits to the Nad line using the HR22 template for two
of the highest signal-to-noise radial bins. The fits clearly reproduce the line
shape more accurately than the earlier results, shown in Figure 3.15.
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Figure 3.24: Major axis kinematic results for the four best-fitting templates
and with the wavelength range constrained to sample only the Nad absorp-
tion line. The templates produce consistent results for the region where
there is adequate signal and large errors otherwise. The flatness of the dis-
persion profile is encouraging. The symbols denote the templates HR22
(red triangle), HR224 (blue square), HR14 (yellow pentagon), HR19 (green
circle).

curves and dispersion profiles are consistent, within errors. In addition, the

dispersion profile is roughly flat, suggesting the true kinematics are being

reproduced accurately (the points are now independent) — physically, the

dispersion profile does not need to be flat, but the fact that it is suggests that

the kinematics for the independent points are being faithfully reproduced.

The rotation curves are symmetric within errors. These four curves will be

averaged to produce the final major axis results.

Relying on the Nad line exclusively is potentially dangerous, given the

possible contamination discussed in Section 3.4. However, given the consis-

tency with past results (Foltz et al. 1992) for the central velocity dispersion,
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the smoothness of the spectral feature, the small wavelength range used to

minimise contamination, and the quality of the fit using a Gaussian alone,

there does not appear to be cause for concern.

Minor axis

The analysis of the minor axis data is similar to that performed for the

major axis. In this case, one would expect less rotation to be present, but a

reasonably similar dispersion profile. Some rotation is expected since the slit

is placed 12◦ off of the minor axis, the slit is sufficiently wide as to include

stars on many parts of their (assumed) circular orbits (disk), and the bulge

component is expected to have more isotropic orbits.

The same wavelength ranges as were used for the major axis are used for

the minor axis, and so a direct comparison of the χ2 values is possible. An

order 3 polynomial was again employed initially for the continuum fitting,

and each template stellar spectrum applied to the data to determine the

kinematics.

All templates produce poor quality curves for the Mgb and FeI lines,

particularly at radii, r < 0. Figure 3.25 displays the best-fitting rotation

curve and dispersion profile for the Mgb and FeI lines along the minor axis.

The dispersion uncertainties are very high and the rotation does not resemble

the shape expected from a rotating galaxy.

The Nad line produces smooth curves with a rotation gradient and flat

dispersion profile across the galaxy. Given this and the poor results for

the FeI and Mgb lines, Nad will be used in the following analysis. The

χ2 values show excellent agreement at all radii except the outer few, which

produce unreasonable values (∼ 104). As such, these outliers are removed

from the χ2 comparison, as they skew the results and don’t allow sufficient

discriminating power in the central regions. Table 3.5 lists the χ2 values for

the best-fitting solutions for each template. For the Nad line, the HR14 and

HR224 templates once again are the preferred stellar type. (Note that the

results with outliers included also show similar trends). As for the major

axis, the three best-fitting templates, HR14, HR224 and HR22, are linearly

combined in an attempt to find a better solution, but no improvement is

found compared with the results for the HR14 template alone.

The centre of the galaxy and velocity zero point are found in a similar

way to the major axis. Figure 3.26 displays the best-fitting profiles after
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Figure 3.25: Minor axis rotation curve and velocity dispersion profile for the
best-fitting stellar template (HR14) for the Mgb (green triangles) and FeI
(blue squares) absorption lines. There is clear contamination occurring at
r < 0, and the dispersion profile uncertainties are very high.

Template Stellar Type Nad χ2 Nad ∆χ2

HR14 K2III 118 64
HR19 K0III 128 64
HR224 K5III 117 65
HR22 G9III 126 64
HR279 G7III 130 64
HR40 G0III 127 64
HR4 G5III 131 64
HR60 G8III 130 64

Table 3.5: Average and standard deviation of χ2 statistic for each template
applied to the Nad line for the minor axis.
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Figure 3.26: Minor axis rotation curve and velocity dispersion profile for
the best-fitting stellar template (HR14) for the Nad absorption line, after
solving for the galactic centre using a Gaussian profile. The contamination
seen in the Mgb results are not visible here, however the profile uncertainties
are still very high.

shifts. The contamination that is evident in the Mgb/FeI results are not

visible here, however the uncertainties are still very high on both the rotation

curve and velocity dispersion profiles. Some rotation is visible in the rotation

curve, as expected, but not at the level of the major axis. The central line-

of-sight velocity dispersion is also consistent between the major and minor

axis (for the Nad line), σc ' 220 kms−1, which is encouraging, and compares

well with the result from Foltz et al. (1992) of σc ' 215±30 kms−1.

To improve the results, as with the major axis, the wavelength range is

reduced to just sample the Nad line and the data are binned to the reso-

lution of the observations. Again, the four best-fitting templates produce

consistent results and the uncertainties are reduced from those for the larger

wavelength range. Figure 3.27 shows the four template rotation curves and
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Figure 3.27: Minor axis kinematic results for the four best-fitting templates
and with the wavelength range constrained to sample only the Nad absorp-
tion line. The templates produce consistent results, but outlying points are
severely affected by the lack of galaxy signal beyond r∼0.6′′ and are therefore
removed. Symbols are as for Figure 3.24.

dispersion profiles. The general shape of the earlier results is retained, but

the data are much cleaner and the uncertainties reduced to the level found

for the major axis. There are a lot of data omitted from this figure, due to

the poor fits at these radii (low signal-to-noise produced double dips that

the software tried spuriously to fit). The consistency between templates and

the matching of the velocity dispersion in the central regions with that from

the major axis, provide confidence in the results. As expected, the rotation

is of a smaller magnitude than the major axis, but shows a definite trend of

increasing rotation with radius and a flattening beyond a few arcseconds.
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3.5 Results

3.5.1 2237+0305 rotation curve & velocity dispersion profile

The results from the above analysis can be now presented as the rotation

curve and line-of-sight velocity dispersion profile for the major and minor

axes. The results for the four best-fitting templates are averaged (since they

are so similar, a simple average is justified) to produce the final fits. Figure

3.28 displays the fits and their uncertainties.

3.6 Conclusions

In this chapter data from the ESI echelle instrument on the Keck telescope

were used to measure the major and minor axis kinematics of the galaxy

2237+0305. Three stellar absorption lines were used for measurement —

FeIb, MgIb and Nad — but the former two were found to be contaminated,

most likely by quasar spectral features at their wavelengths, and were not

used in the final analysis. The spectra of eight nearby stars, with contiguous

spectral type matching those expected in a galactic bulge (and matching the

(g−r) colour measured by Yee 1988), were used as templates against which

the observed galaxy spectrum was matched. The Nad absorption line centre

(rotation) and line width (velocity dispersion) were measured using these

templates as calibration. The colder templates (spectral types G9III-K5III)

were found to fit the line profile most accurately and their results were

combined for the final measurement. Kinematics were obtained in a radius

range from the galactic centre to ∼5′′, except in the minor axis dispersion

profile where low signal-to-noise affected results on one side of the galaxy.

These results will be used in the distribution function analysis presented in

the next chapter to constrain the mass distribution of 2237+0305.
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Figure 3.28: Final rotation curve and velocity dispersion profile for the major
(red squares) and minor (blue triangles) axes of 2237+0305. The large error
bars far from the galactic centre reflect the lower signal-to-noise in these
regions.
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CHAPTER 4

Mass Distribution of 2237+0305

The kinematic results from Chapter 3 are applied to modelling the galaxy

2237+0305. A combination of photometric, kinematic and lensing informa-

tion is used to construct a mass model for the four major mass components of

the system — the dark matter halo, bulge, disk and bar — plus an external

shear due to perturbers along the line-of-sight. For the kinematic compari-

son, the bulge is modelled as a spherical system with a velocity anisotropy

to mimic the observed flattening. The best-fitting solution is not a statisti-

cally acceptable fit to the data, suggesting an improved kinematic model is

required. The best-fitting solutions favour a bulge with slightly tangentially

anisotropic orbits and a softened isothermal-like dark matter halo.
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4.1 Galaxy distribution function

In Chapter 2, where the mass distribution of 2237+0305 was modelled, it

is argued that kinematic information breaks the remaining degeneracies be-

tween models. The high quality kinematic information obtained using the

Keck telescope, presented in Chapter 3, can be applied to constrain the mass

distribution.

Instead of constructing mass models and matching them to the lensing

and kinematic data, the best approach is to construct complete phase space

distribution functions (DF) of the mass components that fit all of the data

simultaneously. Unfortunately, constructing DFs for flattened systems with

mass components with different position angles is extremely difficult. How-

ever, since previous models have suggested the bulge component provides

most of the lensing convergence and pressure support in the centre of the

galaxy, its DF will be modelled to properly calculate the kinematics. The

other components are modelled as they were in Chapter 2. This method

provides a more realistic mass model since the spatial and velocity structure

are intimately related from the outset, rather than combined a posteriori.

Spherically symmetric and static systems can have quite simple DFs that

depend only upon the energy, E, of the system. Since the DF is a function

of the integrals of motion of the system, Jeans’ Theorem states that it must

be a solution of the Boltzmann equation (Binney and Tremaine 1987). A

spherical system has the energy and the three components of the angular

momentum as integrals. In an axisymmetric system, the integrals are the

energy and one component of the angular momentum. For a more general

system with triaxiality, for example, the DF can be a complicated function,

and the total energy may be the only integral. Real galaxies are rarely well

fitted by an analytic functional form for the DF, but much work has been

done to construct those that fit the components of real galaxies sufficiently.

4.1.1 Distribution function models

The distribution function for a system completely describes its structural

and kinematic properties. The function, f , is the mass per unit spatial

volume per unit momentum volume in the system. With a knowledge of

the DF, the entire history and future of the system can be obtained by time

evolution.
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Where the DF depends solely on the energy, E, the mass density, ρ(r),

can be found via,

ρ = 25/2π

∫ ψ

0
f(ε)(ψ − ε)1/2 dε, (4.1)

where ψ = −Φ is the gravitational potential, and ε = −E, is the energy

(Tremaine et al. 1994). From this expression, it is clear that the total DF

can be constructed from a linear combination of individual component DFs,

the same as the total density. Inverting this expression gives Eddington’s

formula (Binney and Tremaine 1987; Eddington 1916) for the DF in terms

of the mass density function, ρ,

f(ε) =
1

23/2π2

d

dε

∫ ε

0

dρ

dψ

dψ

(ε− ψ)1/2
(4.2)

where ρ = ρ(ψ) (the ‘augmented density’) is the density written as a function

of the potential alone.

Moments

The moments of a spherical distribution are defined as,

µijk(r) =

∫ ∫ ∫

f(r,v)virv
j
θv
k
φ dv, (4.3)

where µ000(r) denotes the density, ρ(r), and acts as the normalisation for

the moments, and the integrals extend over all momentum space. Given this

definition, the mean and variance (the square of the velocity dispersion) of

the velocity in the radial direction are,

vr(r) =
µ100

µ000
=

∫

f(r,v)vrdv
∫

f(r,v) dv
, (4.4)

σ2(r) = v2
r (r) =

µ200

µ000
=

∫

f(r,v)v2
rdv

∫

f(r,v) dv
, (4.5)

assuming vr = 0. When the system is spherically symmetric and isotropic,

the velocity dispersion is more easily calculated using the equation of hy-

drostatic equilibrium (Tremaine et al. 1994),

d(ρv2
r )

dr
= −ρdΦ

dr
. (4.6)
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If a uniform velocity anisotropy is included in the modelling, these equa-

tions can be extended. Binney and Tremaine (1987) define the anisotropy

parameter, βa, via

βa(r) = 1 − σ2
θ

σ2
r

, (4.7)

where σθ and σr are the angular and radial velocity dispersions, respectively.

Here, this parameter will be assumed to be constant with position, although

in general it is not.

Hence, varying βa varies the amount of tangential versus radial motion

(βa = 1, purely radial; βa = 0, isotropic; βa → −∞, purely tangential).

For a spherically symmetric but anisotropic system, the radial velocity dis-

persion can be calculated from the Jeans Equations with a correction for

anisotropy (Lokas et al. 2004),

σ2
r (r) =

r−2βa

ρ(r)

∫ ∞

r
x2βaρ(x)

dΦ

dx
dx. (4.8)

Before these kinematics can be compared with data, the velocity dis-

persions and rotation curves need to be projected onto the line-of-sight.

Tremaine et al. (1994) quote the line-of-sight spherically symmetric velocity

dispersion at projected radius R as,

σ2
los(R) =

2

ΥI(R)

∫ ∞

R

ρ(r)v2
r (r)r dr

(r2 −R2)1/2
, (4.9)

where r andR are the spherical and projected radii from the potential centre,

respectively, and ΥI(R) represents the mass-to-light ratio times the surface

brightness,

I(R) =
2

Υ

∫ ∞

R

ρ(r)r dr

(r2 −R2)1/2
. (4.10)

When the velocity distribution is anisotropic, geometry shows that there is

an extra factor in this expression (Lokas et al. 2004),

σ2
los(R) =

2

ΥI(R)

∫ ∞

R

ρ(r)v2
r (r)r

(r2 −R2)1/2

(

1 − βa
R2

r2

)

dr. (4.11)
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Equations (4.8) and (4.11) can be combined to write (Lokas et al. 2004),

σ2
los(R) =

2G

ΥI(R)

∫ ∞

R

r1−2βa

√
r2 −R2

(

1 − βa
R2

r2

)
∫ ∞

r
x2βa−2ρ(x)M(x) dxdr

(4.12)

which expresses the line-of-sight velocity dispersion for a system with an

anisotropic velocity tensor. This can be reduced to a one-dimensional nu-

merical integral by changing the order of integration and using the hyper-

geometric function (see Appendix B for a full derivation).

Binney and Tremaine (1987) describe the calculation of the rotation

speed, vc, in the presence of a uniform anisotropy,

v2
c (r) = −σ2

r

(

d ln ρ

d ln r
+
d lnσ2

r

d ln r
+ 2βa

)

. (4.13)

which can be projected onto the line-of-sight and compared with the mea-

sured rotation curve.

These expressions allow one to take a spherical density profile for a mass

component and calculate the expected anisotropic kinematics. They will be

applied to the bulge component.

4.2 Mass models

Given the larger number of degrees of freedom in the problem with the

addition of kinematic information, one can accommodate more flexibility

in the models for the mass components. There is no reason to change the

modelling of the disk (exponential surface density) and bar (Ferrers ellipse),

since these are standard profiles that have worked well in previous work. The

distribution of dark matter, however, remains unknown, and a more general

profile can be fit to it. In addition, an external shear can be included in

the solution of image positions to accommodate the influence of external

perturbers along the line-of-sight. From the work of Rauch et al. (2002),

we know that there are a number of absorption systems between the lens

and quasar source that may affect the image positions. In addition, other

unknown mass concentrations can have a small, but important impact on

image positions — shear strength, γext ∼ 0.01–0.1, for most lenses (Witt

and Mao 1997), and Wucknitz (2002) finds γext . 0.13 for 2237+0305, based

upon requiring H0 to be positive.
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The model chosen for the bulge component needs to be as simple as

possible, for tractability, while retaining the key features that are required

for both the lensing to reproduce the image positions, as discovered through

the analysis of Chapter 2, and the kinematics to reproduce the spectroscopic

observations. In previous work, and following that of Schmidt (1996), the

bulge can be modelled successfully to follow a de Vaucouleurs surface bright-

ness profile, with a flattening. More generally, the de Vaucouleurs profile is

one of a class of profiles called Sérsic profiles (Sérsic 1968) where,

I(R) = I0 exp [−bm(R/rb)
1/m], (4.14)

is the surface brightness distribution, rb is the characteristic scale length,

and bm is a constant. Clearly, the de Vaucouleurs profile corresponds to

m = 4, with an appropriately scaled rb [see Equation (2.1)].

Lima Neto et al. (1999) and Lokas et al. (2004) present volume depro-

jections of the circularly symmetric Sérsic profile. These expressions allow

one to use the kinematic expressions for the rotation speed and line-of-sight

velocity dispersion, presented in Equations (4.13) and (4.12), but are not

easily generalisable for a non-spherical density profile, although a flattened

bulge component is critical for the lensing. For the kinematics, the spherical

Sérsic expression with a constant anisotropy will be used across the bulge

to mimic the effect of flattening on the kinematics. Intuitively, the shape

of a stellar component must be related to the types of orbits found within

it, and hence the anisotropy of the stellar population. Binney (1978) calcu-

lates the ratio of the rotation to dispersion speed for elliptical galaxies with

given ellipticities (note that this refers to the rotation of the form rather

than streaming motions). A back-of-the-envelope calculation presented by

Binney shows that the ratio of kinetic energy in the radial and rotational

components is a direct function of the axis ratio of the figure. Given that

only two axes are measured for the bulge in 2237+0305 (the third is lost

in projection), the exact relationship between the ellipticity and anisotropy

is a priori unknown, however an anisotropic velocity tensor can be used to

mimic an ellipticity.
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The deprojected Sérsic profile, for general m, is given by,

ρ(r) = ρ0

( r

a

)−p
exp

[

−
( r

a

)1/m
]

, (4.15)

ρ0 = Σ0
Γ(2m)

2aΓ[(3 − p)m]
, (4.16)

p = 1.0 − 0.6097/m + 0.05463/m2, (4.17)

a = rb/(bm)m (4.18)

where a is a generalised scale length and Σ0 is the central surface mass

density (= κΣcr for connection with the lensing). The mass enclosed within

a given radius is easily calculated,

M(r) = 4πρ0a
3mΓinc

[

(3 − p)m,
( r

a

)1/m
]

, (4.19)

where Γinc is the incomplete Gamma function. In addition, the bulge and

bar are constrained to have equal mass-to-light ratios since they contain the

same population of stars.

The dark matter halo is modelled with a spherical generalised cusped

mass model, with variable inner and outer density slope (Muñoz et al. 2001;

Keeton 2001). This profile reduces to a variety of useful models, such as the

NFW, Hernquist and isothermal, and has the form,

ρ(r) =
ρs

(r/rh)γ [1 + (r/rs)2](n−γ)/2
, (4.20)

where γ and n are the inner and outer logarithmic slopes, respectively, and

rh is the characteristic scale length. For a spherical model, the lensing

convergence, κ, is given by,

κ(r) = κhB

(

n− 1

2
,
1

2

)

(1 + x2)(1−n)/2
2F1

[

n− 1

2
,
1

2
;
n

2
;

1

1 + x2

]

, (4.21)

where κh = ρsrh/Σcr, x = r/rh, B is the beta function and 2F1 is a hyper-

geometric function.

The external shear adds both a convergence (equivalent to a mass-sheet

degeneracy) and a shear to the calculation of bending angles. Neglecting

the constant surface mass density sheet κ, the potential can be written as
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Component Parameter Definition

Bulge κb convergence
rb scale length
βa anisotropy parameter

Disk κd convergence
rd scale length

DM Halo κh convergence
rh scale length
γ inner slope
n outer slope

Bar κbr convergence∗

Shear γext shear strength
θγ shear angle

Source βx x source position
βy y source position

Table 4.1: Parameters to be fit in the combined lensing and kinematic model
of 2237+0305. The ellipticities of the bulge and disk are fixed at their
photometric value, and the bar is modelled as in Schmidt (1996) with only
a variable M/L. There are 13 parameters in total. (∗the bar and bulge
mass-to-light ratios are constrained to be equal.)

(Keeton 2001),

ψ(r, θ) = −r
2

2
γext cos 2(θ − θγ), (4.22)

where θγ is the direction of the shear (relative to the x-axis) and γext = (γ2
1 +

γ2
2)1/2 (see Section 1.3) is the shear strength (dimensionless). The bending

angles at each image position can be calculated by taking the gradient of

this potential.

The parameters in the model are shown in Table 4.1. There are 13

parameters to fit, including the unknown source position. The constraints

include the four image positions, the two HI rotation points and the kine-

matic information (16 points for each rotation curve and dispersion profile),

giving 74 constraints, and therefore 74–13=61 degrees of freedom.

There are, however, reasons to reduce the amount of kinematic informa-

tion used in the fitting. Firstly, the method used to calculate the velocity

dispersions [Equation (4.12)] will assign the same dispersion to both the

major and minor axis — the anisotropy is modelled to alter the dispersion,

but the alteration is isotropic. This method will affect the rotation speed

however, since rotation is measured along the line-of-sight and the system is

inclined. Hence, the minor axis dispersion data will not be used to constrain
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the model.

Secondly, the rotation data are asymmetric from one side of the galaxy to

the other. This is not surprising; we know that 2237+0305 has a bar lying at

a different position angle to the bulge and disk, and the disk has prominent

spiral arms. Hence, fitting a simplified model such as that discussed here

will not be able to reproduce both sides of the rotation curve. The data to

the left of centre in the plots are better behaved than those to the right —

the errors are lower and the curves smoother — and so only these data are

used.

Removing the unused data leaves the system with 42 constraints and 13

parameters, giving 29 degrees of freedom. The χ2 statistic quantifying the

goodness of fit for a model is defined as,

χ2 =
∑

Images

(θ − θmod)
2

σ2
images

+
∑

rHI

(v − vmod)2

∆v2
(4.23)

+
∑

rKeck

(v − vmod)2

σ2
v,data

+
∑

rKeck

(σdata − σmod)2

σ2
data

, (4.24)

where the summations are over image positions, HI rotation points, Keck

rotation points and Keck velocity dispersion points, respectively. The re-

duced χ2, given the large number of degrees of freedom, will be defined as

χ2/29. One aims for a reduced χ2 of unity for a statistically acceptable fit.

4.3 Construction of kinematic model

To compare the results with the measured data, the effect of aperture size

and galaxy inclination need to be taken into account, after the line-of-sight

calculation [Equation (4.12)] projects through the galaxy. Since the slit

used to measure the spectrum has a finite width and the observations do

not have perfect resolution, there will be an area on the sky that contributes

to each of the observed kinematical datapoints. Each point will contribute

an amount proportional to the surface brightness of the galaxy at that point.

The aperture kinematics are therefore calculated in a similar way to those

along the line-of-sight. Given the axis ratio of the assumed circular disk,

the galaxy’s inclination is calculated to be 60◦ from face-on, reducing the

line-of-sight rotation along the major axis by cos(60◦). In addition, since the

observations were taken 12◦ from the major and minor axes, this also needs
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to be taken into account when comparing a model curve with the measured

data.

Given the corrections described above, the following recipe is followed to

model rotation velocity data before comparison with the observed data:

• construct a rectangular grid around the datapoint, 0.3′′ on either side

along the slit and 0.625′′ either side across the slit;

• at each grid point, multiply the surface brightness at that position by

the rotation velocity;

• resolve this weighted velocity into the component along the line-of-

sight;

• sum contributions from each grid point over the resolution element

and normalise by the total surface brightness in the grid;

• multiply result by cos (60◦) for inclination correction.

Mathematically, the line-of-sight velocity at a point (x, y) on the plane of

the sky is

vap(x, y) =
cos (60◦)

∑

∆s Σ(x, y)

∑

∆s

Σ(x, y)vc(x, y)
x

√

x2 + y2
, (4.25)

where ∆s is each grid rectangle in the resolution element, Σ(x, y) is the

surface density (surface brightness × Υ) and the geometric factor resolves

the vector along the line-of-sight. The construction for this calculation is

shown in Figure 4.1, where the blue lines show the slit edges and the red

squares denote the grid across one resolution element. The aperture veloc-

ity dispersion is calculated using a similar recipe, however the line-of-sight

component is already calculated via Equation (4.12).

The anisotropy parameter, βa, plays an important role in the rotation

speed of the bulge component. Using Equation (4.13), the amount of ro-

tation increases as βa decreases, since this corresponds to more tangential

and less radial motion. Thus, a mass distribution for the system may also

constrain the degree of anisotropy in the bulge velocity distribution.

The measured velocity dispersion is not a function of the bulge density

profile alone, but is increased by the presence of a large dark matter compo-

nent in the inner regions. The disk component has its own small dispersion
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1.25"

0.6"

12 deg
x

y

Figure 4.1: Schematic of the galaxy showing the spatial apertures (resolution
elements) over which kinematic models must be integrated to compare with
real data. The slit width during the observations was 1.25′′ and the spatial
resolution 0.6′′. The blue lines show the position of the slit, 12◦ offset from
the major and minor axes and the red grid shows how the kinematics are
calculated. The green circles show the quasar image positions.

(∼ 20kms−1) that can be ignored. Since the dark matter kinematics are not

measured directly, the halo’s influence will be observed through an increased

dispersion in the bulge stars. This increase can be approximated by use of

the hydrostatic equation to find the relationship between mass enclosed and

dispersion in a spherically symmetric system. Note that Bottema (1993)

and Kregel (2003) derive an estimate for the size of this effect for thin disks

embedded in dark matter halos. Using Equation (4.6) and assuming a vol-

ume density profile, ρ∼r−η, and potential, Φ ∼ M/r ∼ r2−η, the radial

dispersion, σr, is found to scale as,

σ2
r(r) ∼ rη ∼ ρ−1, (0 < η < 1) (4.26)

σ2
r(r) ∼ −r ln r, (η = 1) (4.27)

σ2
r(r) ∼ r2−η ∼M(r)/r, (1 < η < 3) (4.28)

where M(r) is the mass enclosed at radius r (Bertin et al. 2002). Hence, the

scaling depends on the density profile. In the case of the Sérsic profile used



94 Mass Distribution of 2237+0305

here for the bulge, η ∼ 0.85 in the central regions in which we are interested,

and the first approximation is used. Hence, the dispersion calculated for the

bulge component will be scaled by,

σ2
meas = σ2

bulge ×
ρbulge

ρbulge + ρhalo
, (4.29)

to determine the overall stellar velocity dispersion, where σ2
meas and σ2

bulge de-

note the measured and bulge-alone velocity dispersions, respectively. Strictly,

Equation 4.6 is for a self-gravitating system — bulge + halo. In this case

the halo dispersion is unknown a priori and thus this approximation is used

to factor the halo influence into the stellar dispersion.

4.4 Results

No models were able to fit all of the data to a statistically acceptable level.

Given the simplicity of the models and the structure observable in the kine-

matic data, this is not surprising. The best-fitting solutions will therefore be

taken and the goodness-of-fit studied while interesting parameters, such as

the inner and outer slope of the dark matter halo and the bulge anisotropy

parameter are varied.

4.4.1 Best fits

The model with the best-fitting solution has a massive dark matter halo

with a softened isothermal density profile (γ ∼ 0, n ∼ 2) that dominates

both the lensing convergence and rotational support of the galaxy at all radii

across the optical disk. In this model, the bulge and bar have unphysically

small mass-to-light ratios (<0.03Υ�, compared with ∼2–5Υ� as discussed

in Section 2.4.2) and the disk and external shear provide the shear for the

image position fitting. The model also favours bulge orbits that are slightly

tangential (βa=0.05±0.05), although it is also consistent with isotropy. This

solution is not acceptable, in a statistical sense with reduced χ2 = 2.9. Of

the four components used for the χ2 calculation, only the outer HI rotation

points are fit acceptably. Table 4.2 shows the parameters for the best-

fitting model and Figure 4.2 shows the rotation curve. The uncertainties

are also shown for each parameter. They are defined as the deviation in the

parameter value corresponding to an increase in the reduced χ2 of one, while
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Component Parameter Value

Bulge M/LI (0.03±0.09)Υ�

rb 3.9′′

βa -0.05±0.05
Disk M/LI (2.5±1.7)Υ�

rd 11.3′′

DM Halo κh 0.46±0.02
rh (1.85±0.25)′′

γ 0.00±0.01
n 2.53±0.05

Bar M/LI (0.03±0.09)Υ�

Shear γext 0.015±0.025
θγ (18±100)◦

Source βE -0.021±0.020
βN 0.001±0.020

χ2 Reduced χ2 2.9

Table 4.2: Parameter values for the best-fitting solution with reduced χ2 =
2.9. The bulge and bar mass-to-light ratios are unphysically small in this
solution suggesting the models require improvement. Here, βE and βN refer
to the source position East and North of the galactic centre. The shear
angle is measured counter-clockwise from the positive x-axis. Uncertainties
are also shown corresponding to an increase of one in the reduced χ2, keeping
other parameter values constant.

keeping all other parameter values constant. Figure 4.3 shows the variation

of reduced χ2 with varying anisotropy parameter, βa.

To reconcile this statistically unacceptable result, it is instructive to look

at the model fit to the kinematics, keeping in mind that only the data to the

left of the galactic centre is used to fit the rotation. Figure 4.4 shows the

fits to the inner kinematics along the major and minor axis. The major axis

rotation curve is well reproduced by the model, but the minor axis rotation is

too high compared with the data. Similarly, the model dispersion profile has

a flat profile overall, but deviates significantly from the data at most radii.

The model is therefore not adequately reproducing the observed kinematics.

The constraints used to model the galaxy in Chapter 2 were primarily

image positions with the two neutral hydrogen rotation points at large ra-

dius (and well away from the image positions). Given that no kinematic

information was available in the central regions, the calculated rotation due

to the four mass components was assumed to be circular motion based on

balancing gravitational and centripetal acceleration. This means that an ac-
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Figure 4.2: Rotation curve (edge-on) for the solution with the best χ2. In
this solution, the bulge and bar have unphysically small mass-to-light ratios
and the lensing convergence and rotational support are dominated by the
dark matter halo. The short-dashed line shows the halo rotation and the
long-dashed shows the disk. Even here the disk is sub-maximal, providing
∼50 per cent of the rotational support, as found in earlier work.

ceptable fit to the data is attainable with the four smoothly modelled mass

components because the constraints effectively lie at only two radii — 0.9′′

(images) and ∼30′′, and there is no kinematic information at the image radii.

Therefore, there is room for deviations from reality at other radii where there

are no constraints (see Figure 2.9 as an example). In comparison, the ad-

dition of the kinematic data effectively provides additional constraints from

the galactic centre to ∼6′′. 2237+0305 has observable additional structure,

not accounted for in the five component model, e.g., prominent spiral arms

that are attached to the bar component. These may not be important for

the lensing (their contribution may be accounted for by the external shear)

but still produce anisotropy in the kinematics.

Kinematically, the bar is extremely difficult to model and a sophisti-

cated attempt has not been made in this work. However, in the central

few arcseconds its presence will have an effect on the streaming motions
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Figure 4.3: Best-fitting solution reduced χ2 as a function of anisotropy pa-
rameter, βa. The model favours a slightly tangentially anisotropic orbital
structure for the bulge while being consistent with isotropy, however the
variation in this βa range is small.

of stars and therefore on the observed kinematics. In addition, the ad hoc

method employed to include the dark matter contribution to the stellar ve-

locity dispersion is an approximation, based upon hydrostatic equilibrium

and therefore neglecting any ellipticity or anisotropy in the system. The

true effect will be more complicated and depends on the clumpiness of the

dark matter.

The inability of the minimisation routine to find an acceptable χ2 reflects

the inadequacy of the mass models to sufficiently reproduce the structure of

the galaxy. The situation, however, is not as dire as it may appear. Solutions

with bulge and bar mass-to-light ratios consistent with the previous results

(M/LI ∼ 2) have reduced χ2 statistics of ∼3.5–4. These are not the best

solutions found but are not significantly worse.

An improved model is therefore required. The structural model is quite

robust given that light profiles of the bulge, disk and bar have been observed,

and that the bar itself has been modelled in detail by Schmidt (1996). The
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Figure 4.4: (Left) Major and minor axis data (triangles) and fits (diamonds)
for the rotation curve (inclined and calculated over an aperture) for the best-
fitting solution. The measurement uncertainties on the data are also shown
as error bars. (Right) Major axis model (diamonds) and data (squares)
line-of-sight velocity dispersion profiles for the best-fitting solution.

kinematic model, however, requires improvement.

Such modelling is beyond the scope of this work, however the analysis

presented here can be used to investigate the density profile of the dark

matter halo and whether it has a constant density core. The results from N -

body simulations, which display a steeper inner slope for the density profile

(γ ∼ 1, although simulations do not converge to a universal value, Navarro

et al. 2004), have been challenged by observational work that suggests the

central regions of halos have constant density cores (γ ∼ 0, n ∼ 2, de Blok

et al. 2001b). To probe the structure of the dark matter halo with the current

modelling, the bulge mass-to-light ratio will be artificially constrained to be

M/LI = 1.9, which is the result found in Chapter 2, and the halo inner

and outer logarithmic slopes varied to determine the goodness-of-fit of each

model.

4.4.2 Dark matter halo structure

Firstly, the best-fitting solution for the fixed bulge and bar mass-to-light

ratios will be established, before the halo parameters are also fixed.

Fixing mass-to-light ratios degrades the quality of the results compared

with those presented above. Allowing the halo slopes to be free, the reduced

χ2 statistic for the best-fitting solution is 5.2 and the parameters for this

model are shown in Table 4.3. The results are not significantly different to
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Component Parameter Value

Bulge M/LI 1.9Υ�

rb 3.9′′

βa -0.05±0.05
Disk M/LI (2.5±1.1)Υ�

rd 11.3′′

DM Halo κh 0.12±0.01
rh (1.22±0.03)′′

γ 0.00±0.20
n 2.24±0.15

Bar M/LI 1.9Υ�

Shear γext 0.014±0.025
θγ (198±110)◦

Source βE -0.034±0.020
βN -0.010±0.020

χ2 Reduced χ2 5.2

Table 4.3: Parameter values for the best-fitting solution with the bulge
mass-to-light ratio fixed. The reduced χ2 = 5.2. The bulge and bar mass-
to-light ratios are unphysically small in this solution suggesting the models
require improvement. Here, βE and βN refer to the source position East and
North of the galactic centre. The shear angle is measured counter-clockwise
from the positive x-axis. Uncertainties are also shown corresponding to an
increase of one in the reduced χ2, keeping other parameter values constant.

those found in the best solution. The shear angle has changed significantly,

reflecting the need to adjust to the increased shear from the bulge and bar,

and the source position has changed, but the disk mass-to-light ratio and

the shear strength are relatively unaffected. Most interestingly, the halo

is still best-fitted with a profile that has an almost constant density core

and declines at large radius with logarithmic slope slightly steeper than

isothermal.

The full edge-on rotation curve and the model fits to the kinematic data

are shown in Figures 4.5 and 4.6. The dark matter halo, although it has

a similar density profile to the solutions above, is much less massive, due

to the significant contribution to the inner rotation by the bulge. The disk,

again, is clearly sub-maximal (∼50 per cent). To the eye, the model fits

the kinematic data as well as the model for the best solution. Indeed, the

increased χ2 is almost entirely accounted for by an increase in the deviation

of the model from the observed image positions.

The inner and outer halo logarithmic slopes will now be fixed to phys-
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Figure 4.5: Rotation curve for the best-fitting solution with the bulge mass-
to-light ratio fixed.

ically interesting values, keeping the bulge mass-to-light ratio also fixed at

M/L = 1.9Υ�, and parameter space searched for the best-fitting solutions.

Figure 4.7 shows contours of the reduced χ2 for models as a function of

fixed halo slope parameters. Increasing the inner slope from zero (constant

density core) worsens the fit significantly — the NFW result from N -body

simulations (γ = 1, n = 3) has a reduced χ2 of 7.1. This is primarily due to

the worsening of the velocity dispersion fit and fitting the image positions.

The NFW density profile cannot be ruled out by these results because the

modelling cannot produce a statistically acceptable mass model, however

the softened isothermal model is the preferred solution.

4.5 Discussion

Although the five component model used to construct the galaxy was not

able to produce a statistically acceptable solution (reduced χ2 = 1), the

best-fitting solution does reproduce the data to a level that suggests an

acceptable model is attainable with future improvements. The most obvious
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Figure 4.6: (Left) Major and minor axis data (triangles) and fits (diamonds)
for the rotation curve (inclined and calculated over an aperture) for the best-
fitting solution with the bulge mass-to-light ratio fixed. The measurement
uncertainties on the data are also shown as error bars. (Right) Major axis
model (diamonds) and data (squares) line-of-sight velocity dispersion pro-
files for the best-fitting solution.

way to improve the modelling is to include the bar orbits in the kinematic

model. Since the bar lies at a different position angle to the other major

components, it will have a complicated orbital structure that will have a

non-trivial influence on the model kinematics. Recently, Shen and Sellwood

(2004) modelled bar orbits to investigate the effect of mass concentrations

on the stability and longevity of the bar. Binney and Tremaine (1987) also

discuss bar kinematic models, including the idealised non-rotating system

that features loop and box orbits of stars. Characteristics of such models

could be applied to the bar in 2237+0305.

The contribution of the dark matter halo to the measured velocity dis-

persion needs to be carefully quantified. Given that one has no a priori

kinematic and structural information about the dark matter component,

general assumptions need to be made carefully. The poorer results for halos

with central logarithmic slopes steeper than constant density are partly due

to the steepening of the velocity dispersion profile for non-constant cores —

a constant density core in the dark matter halo produces a flat velocity dis-

persion profile, in line with the observations. This is an important result for

the profiles of dark matter halos and the predictions of N -body simulations,

and therefore needs to be more rigorously investigated.
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Figure 4.7: Contour plot of the reduced χ2 statistic for the best-fitting
model with inner and outer logarithmic slopes, γ and n. In these solutions,
the bulge and bar mass-to-light ratios are also kept constant. The solution
favours a halo with a constant density core and outer logarithmic slope
between –2 and –2.5, but disagree with a solution consistent with the results
from N -body simulations (γ=1, n=3, black circle).

4.6 Conclusions

The kinematic data providing the observed rotation and velocity dispersion

profile in the central few arcseconds of 2237+0305 are combined with the

knowledge of lensed image positions and the rotation beyond the optical

disk (HI rotation points) to construct a structural and kinematic model of

2237+0305. Five components are used to constrain the mass distribution

— a dark matter halo, modelled as spherically symmetric with a variable

inner and outer logarithmic slope; a de Vaucouleurs bulge, modelled struc-

turally with a flattening consistent with the light profile; an exponential

disk, inclined at 60◦; a Ferrers bar, at a position angle 39◦ from the disk

major axis; and, an external shear, to account for the influence of perturbers

along the line-of-sight. In addition, the bulge and bar mass-to-light ratios

are constrained to be equal, since they combine in the galaxy to form one



4.6 Conclusions 103

continuous, but distorted, component, and share stellar orbits.

Kinematically, the bulge is modelled as a spherical Sérsic profile with a

velocity anisotropy. This is found to be simpler than trying to calculate the

kinematics for a flattened system. The model rotation curve and velocity

dispersion profile are projected along the line-of-sight and then smeared over

a spatial aperture corresponding to the resolution of the observations and

the slit width, before comparison with the observed data.

The best-fitting solution is not a statistically acceptable fit. The reduced

χ2 for this solution is 2.9. This solution also has an unphysically low-mass

bulge and bar, and a softened isothermal-like dark matter halo. The failure

of the model to produce an acceptable solution reflects the inadequacy of the

kinematic model to properly characterise the bulge and bar stellar kinemat-

ics, and the improvement required to the calculation of the halo contribution

to the dispersion profile.

To investigate the goodness-of-fit for different halo models, the bulge

and bar mass-to-light ratios are constrained to be M/LI = 1.9Υ�, the best-

fitting value found in the previous modelling presented in Chapter 2, and

the reduced χ2 calculated for the best-fitting model. A halo with constant

density core and an outer logarithmic slope of n ∼ 2 − 2.5, is found to be

optimal. This solution had a reduced χ2 of 5.2. The best-fitting solution for

a model with a halo profile consistent with results from N -body simulations,

γ = 1 and n = 3, had a reduced χ2 of 7.1.

Future work will improve the kinematic model to include the effect of

the bar on the streaming motion of stars, and investigate more rigorously

how the density profile of the dark matter halo influences the observed kine-

matics.
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CHAPTER 5

Detecting Dark Matter Substructure in the Galaxy

Cosmological models of structure formation in the universe predict the for-

mation of dark matter halos as the first gravitationally bound objects. Small

halos coalesce at the earliest times and grow to the massive halos we observe

today via hierarchical growth. This scenario predicts that current dark mat-

ter halos are not smoothly distributed in space, but rather are lumpy due

to the existence of smaller subhalos orbiting within them. Such dark matter

subhalos should affect the stellar structure of massive galaxies due to their

gravitational interaction as the subhalos transit the disk. The magnitude

of this effect is calculated using simple scattering simulations and the sig-

natures of stellar scattering discussed. The predictions are tested against

observations from the next generation satellite, GAIA, which aims to mea-

sure the six-dimensional phase-space positions of a large number of stars in

the Galaxy, to determine if the subhalos are detectable.
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5.1 Introduction

The Cold Dark Matter theory of structure formation is very successful at

describing many observations of the universe (Peebles 1982). Cold, collision-

less, massive particles, which formed in the early universe, collapse gravi-

tationally to form the seeds of today’s galaxies. At later times, baryons

fall into the dark matter potentials and sink to their centres via dissipative

cooling, producing the luminous galaxies observed in the modern universe.

These processes are understood in a general sense, but many of the details

are, as yet, unknown (e.g. the formation of flattened stellar disks, and the

distribution of dark matter in galaxies).

The mass function of dark matter halos in the universe is a function

of time and the initial power spectrum of primordial density fluctuations.

Measurements of the normalisation and power index of the spectrum are

consistent with a bottom-up approach to structure formation: less massive

halos form first and coalesce to form more massive halos at later times. As

such, one expects smaller subhalos to coalesce with more massive halos. As

the DM is collisionless, massive halos are spatially clumped — the subhalo

structure is not destroyed immediately by collisional processes. Collisionless

processes, such as phase mixing in a time-dependent potential, will eventu-

ally erase the subhalo memory, but this is a process with a long timescale

(of order the relaxation time). Given the predictions of cold dark matter

theory, one expects that dark matter subhalos reside in the Milky Way halo

today, and therefore may be detectable via their gravitational effect on the

stellar disk. It is the aim of this study to estimate the size of this effect and

whether it is observable with the upcoming GAIA experiment.

The Galaxy’s stellar disk is supported by rotation in the radial direc-

tion, and pressure in the vertical direction. Putting energy into the disk,

via a transfer from a massive body, can increase the vertical velocity dis-

persion and increase the disk scale height (‘heating’). Scattering of stars

by a gravitational encounter with a massive object changes the local stellar

velocity distribution function (DF) due to the transfer of energy from the

more massive object to the stars. The change in the DF can be calculated

by integrating over two-body interactions between the stars and the massive

object.

Dynamical friction is an energy transfer process due to the gravitational
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Figure 5.1: Example interaction between a star (blue) and massive object
(red) showing the momentum changes (small arrows) for each particle after
the interaction. The large arrow shows the direction of motion of the massive
object. The massive object’s forward motion is reduced.

interaction between bodies. When one massive body is moving through a

sea of many less massive objects, it will, on average, transfer kinetic energy

to the sea and thus have its own speed reduced. The sea increases its veloc-

ity dispersion due to the energy input. Dynamical friction is effectively the

integrated effect of many two-body encounters between the massive and test

objects. Each individual two-body interaction may transfer energy from the

massive to the test particle, or vice versa, with a given probability, depen-

dent on the exact geometry of interaction. The overall effect, however, is

asymmetric parallel to the direction of motion of the massive object, and

it loses forward momentum to the test particles. The momentum perpen-

dicular to the direction of motion averages to zero since a uniform sea of

test particles interact with it equally from both sides. Figure 5.1 shows an

example interaction between the massive object (red) and the star (blue).

The arrows denote the change in momentum for each particle.

Mulder (1983) constructed a distribution function for the response of the

stellar medium to the passage of a massive object, using Jeans Theorem and

the integrals of motion of the system. His analysis assumes a Maxwellian ve-
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locity, and uniform spatial density, distribution function (DF) for the stars,

and in a spherically symmetric potential. His solution treats the stars as

test particles only, and does not include any subsequent stellar relaxation

or diffusion. He investigates the overdensity of stars that accumulate in the

massive object’s wake, and the subsequent drag force exerted upon it. The

shape and size of the overdensity is found to depend primarily upon the ratio

of the object’s speed to the stellar velocity dispersion (the ‘Mach number’).

In Section 5.2 and 5.3 the problem is introduced, and the collisionless

Boltzmann equation, Jeans Theorem and Mulder’s dynamical friction for-

malism are discussed. The satellite GAIA is then introduced, the uncertain-

ties in its measurements are discussed, and possible sources of confusion in

the Galaxy are reviewed in Section 5.5. Section 5.6 reviews the expected

mass function for CDM halos from past work, and applies these expressions

to a Milky Way-like galaxy mass. In Section 5.7, the semi-analytic results

of Andrew Benson’s simulations are used to obtain realistic subhalo prop-

erties. The simulations performed are then discussed in Section 5.9 and

the relaxation of stars after subhalo transit is investigated in Section 5.9.1.

Phase-space signatures of subhalos are then presented in Sections 5.10 and

5.11, and conclusions are drawn.

5.2 Boltzmann Equation & Jeans Theorem

The evolution of the phase-space distribution function (DF) of a system is

governed by the collisionless Boltzmann equation:

df

dt
=
∂f

∂t
+ ~v · ∇f −∇Φ · ∂f

∂~v
= 0, (5.1)

where f is the mass per unit volume per unit velocity interval, and Φ is the

mean-field gravitational potential of the system. In practice, this equation is

difficult to solve and approximations are required. The integrals of motion

of a system can be used to determine solutions in these cases. Jeans The-

orem states that a DF that is only a function of the integrals of motion is

necessarily also a solution of the Boltzmann equation (Binney and Tremaine

1987).

Mulder (1983) uses Jeans Theorem to look at the response of the DF of

a system to the presence of a massive object. He chooses a DF that is only

a function of the integrals of motion and that reduces to the unperturbed
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solution at infinite distance from the object. In this way he finds a steady-

state solution (which is not unique) to the DF in the massive object’s frame

without needing to consider the Fokker-Planck equation (which accounts

for encounters between particles as non-zero diffusion terms on the RHS

of Equation 5.1). The solution is simply the response of the medium and

does not include the subsequent two-body relaxation of the stars after they

have been scattered. He finds an overdensity of particles behind the massive

object, which causes the dynamical friction.

The final DF can then be integrated over either spatial or velocity co-

ordinates in order to find the density distributions. Both spatial density,

ρ(r), and velocity distribution, f(v), are interesting for this problem — a

signature of the massive object’s presence could be found in either. GAIA

has the ability to probe both domains.

5.3 Dynamical friction framework

Behind a massive object moving through a sea of test particles, an overdense

wake is produced. This overdensity depends on the speed and mass of the

massive object. For high Mach number (v/σ), the equidensity surfaces of the

wake become highly collimated and this is a possible observable signature of

the passage of the massive object. (Physically, in the massive object’s frame,

the test particles move towards the massive object with higher relative speed

and some will therefore cross the object’s path further behind it, stretching

the region of overdensity behind the massive object.)

The mechanism of dynamical friction is analysed in Binney and Tremaine

(1987). The most commonly used form of the equation for the decelera-

tion of the massive object was first written down by Chandrasekhar (1943).

This mean effect (averaged over many individual stellar orbits) requires that

vM � vtest and M � m.

There are two intuitive ways to visualise the slowing of the massive ob-

ject. Firstly, a single scattering event will change a test star’s velocity by

giving it a kick parallel to the direction of the massive object’s motion. The

massive object would simultaneously be kicked in the opposite direction; its

forward speed decreases when integrated over many test stars. The perpen-

dicular kicks average to zero.

The second way to visualise dynamical friction is by considering the
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Figure 5.2: Overdensity of stars behind the subhalo (located at the origin),
in theXY plane. The subhalo is moving in the +Z direction (the overdensity
is rotated as the stars have an initial velocity component in the X direction).
Results taken from simulations described in Section 5.9.

paths of the test particles as they are scattered by the massive object. An

initially uniform field of test particles will develop an overdensity behind the

massive object as they are deflected around it since they are gravitationally

attracted to it. This overdensity will exert a drag force on the massive object,

slowing its motion. Figure 5.2 shows an example of a stellar field, and the

overdense region behind the subhalo (located at the origin and moving in

the +Z direction), taken from simulations described in Section 5.9.

The commonly employed expression (Chandrasekhar 1943) for the slow-

ing of an object of mass M , and speed vM , travelling through an infinite

field of stars of mass m, with a Maxwellian velocity distribution, is given by,

dvM
dt

= −4π lnΛG2ρ0M

v3
M

[

erf(X) − 2X√
π

exp(−X2)

]

vM , (5.2)

where Λ is the Coulomb logarithm and is given by Λ = bmaxV
2
0 /G(M +

m), bmax is the maximum scattering impact parameter, V0 is the initial

relative velocity, X = vM/
√
σ, σ is the stellar velocity dispersion and ρ0

is the background stellar density. Most importantly, the deceleration is

proportional to the mass M . This equation can be used to estimate the
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heating of a test particle (see Section 5.8).

The overdensity will be calculated in a region as,

δ =
ρ

ρ0
− 1, (5.3)

where ρ0 is the background density seen in Equation (5.2). What is the

threshold overdensity required for the stars to be observable over the back-

ground? This question has different answers depending on whether a uni-

form stellar distribution is assumed, or a real, clumpy disk distribution.

Similarly, the projection of an overdensity onto the sky will dilute any ob-

servable effect. The addition of three dimensions of spatial information can

help in this regard, isolating a streamer of stars. Here, the uncertainties of

the GAIA results are critical, and these are discussed next.

A discussion of confusing sources of phase-space signatures is then pre-

sented, followed by an investigation of the spatial and velocity domain signa-

tures for point-mass and extended subhalos. The results are then compared

with the expected number and distribution of subhalos from N -body simu-

lations.

5.4 GAIA as the instrument of choice

GAIA (Global Astrometric Interferometer for Astrophysics) is a European

Space Agency satellite to be launched in 2010–2012 to the second Lagrange

point (Lindegren and Perryman 1996). Its primary science goal is to measure

the six dimensional phase-space co-ordinates of 1 billion Galactic stars to

unprecedented accuracy, easily surpassing the previous census performed by

the Hipparcos satellite. With expected microarcsecond astrometry it will

measure radial velocities, distances (via parallaxes) and proper motions to

high precision. The final catalogue will provide a high precision view of the

spatial and kinematic structure of the Galaxy.

Initial estimates of measurement uncertainties for GAIA are calculated

using basic mission data such as primary mirror size and CCD efficiency. An

Astrometric Accuracy Tool has also been developed to simulate data with

more secondary effects such as star colour, effect of choice of mirror coating,

and differences in the spatial scanning method with position on the sky.

The predictions used in this work are derived from preliminary estimates;
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advanced results are not yet available.

The predictions for the accuracy of parallaxes measured with GAIA can

provide estimates of distances to bright stars and those within a few kilopar-

secs (parallax measurements are used for distance determinations). Table

5.1 shows the distance error of stars with a given V-band apparent mag-

nitude as calculated from the quoted GAIA uncertainties (Lindegren and

Perryman 1996). Also included is the V-band absolute magnitude of such

stars at the given distance. Clearly, faint stars will not be visible at large

distance. Bright stars are accurate to distances of ∼10 kpc. Fainter stars

V Error Distance MV ∆d ∆v

µas kpc % kms−1

20 160 1 10 16 1.5
20 160 5 6.5 80 8
20 160 10 4.8 >100 15
20 160 20 3.5 >100 30

15 11 1 5 1 0.1
15 11 5 1.5 5 0.5
15 11 10 0 10 1

10 4 1 0 0.4 0.04
10 4 5 -3.5 2 0.2

Table 5.1: Parallax errors of stars with given V-band apparent magnitudes
and distances from the observer as a percentage of actual distance. The
absolute magnitude is also shown to demonstrate the use of bright stars at
large distances. The final column gives the proper motion uncertainty given
the parallax errors.

are only accurately measured within ∼1 kpc. This implies that unwanted

faint stars may be incorrectly located in space and therefore measured to lie

in a region of interest where they do not actually reside — one cannot say

where they are located with certainty. This is reason to attempt this anal-

ysis with only brighter stars. Similarly, Table 5.1 shows the proper motion

uncertainty expected given the parallax errors. The velocity distributions

of stars at a distance of 10 kpc from the Sun should be accurate to better

than 15 kms−1. In addition, GAIA will be able to measure radial velocities

to 1–10 kms−1 out to V=16–17 (the range accounts for the distance uncer-

tainty to the star). This accuracy is comparable to that in the plane of the

sky.

Accuracy in distance and proper motion measurements is critical for
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the isolation of subhalos in phase space. The use of brighter stars for this

analysis is clearly better than fainter stars, however the small number of

bright stars could ruin any potential signal. Holmberg and Flynn (2000)

quote the number density of local stars within absolute magnitude bins

from Hipparcos and HST measurements. Table 5.2 reproduces these values

from Table 1 of Holmberg and Flynn. The faintest bin therefore accounts

Magnitude ρ(0)
Bin M�pc−3

MV <2.5 0.0031
2.5< MV <3.0 0.0015
3.0< MV <4.0 0.0020
4.0< MV <5.0 0.0024
5.0< MV <8.0 0.0074

8.0< MV 0.014

Table 5.2: Local stellar densities in the Galaxy within different absolute V-
band magnitudes reproduced from Table 1 of Holmberg and Flynn (2000).
All results are from the Hipparcos catalogue, except for the MV > 8.0 bin
which uses HST number counts.

for ∼ 46 per cent of the total local stellar census (excluding brown and

white dwarfs). These stars reach V=20 at d=2.5 kpc where their distance

uncertainty is ∆d/d ∼ 0.4. Assuming only V=15 stars are to be used within

2.5 kpc (due to their reasonable distance uncertainties), only 15 per cent

of the stars (MV < 3.0) are available. Figure 5.3 shows the percentage of

stars available for use as a function of distance from the Sun. Clearly, an

apparent magnitude cut at V=15 would only be useful for subhalos passing

within 2–3 kpc of the Sun, since so few are available beyond ∼3 kpc. These

issues will certainly reduce the probability of a subhalo being detected.

The GAIA uncertainties quoted in Table 5.1 and the stellar densities

published in Holmberg and Flynn (2000) will be used as the threshold values

in all subsequent analysis.

5.5 Confusion

The Galaxy is not composed of a uniform distribution of stars with a well

characterised velocity or spatial distribution function. The issue of confusion

in both domains is a critical factor for detecting dark matter subhalos. Col-

lections of stars such as star formation regions and spiral arms have higher
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Figure 5.3: Percentage of available stars for analysis as a function of helio-
centric radius for a V=15 cutoff. Even the brightest stars are only available
within 3 kpc of the Sun.

density than surrounding regions, possibly mimicking the dynamical friction

signatures of a transiting object.

To determine the level of inhomogeneity in the disk itself, we look at

results from the most recent comprehensive study of the phase-space distri-

bution of stars in the disk, performed by the Hipparcos satellite (Esa 1997).

In most studies, the disk density distribution is determined using kinematic

information, since distances are poorly determined. Chereul et al. (1999)

investigated inhomogeneities in the Hipparcos sample for A-F type dwarf

stars within 125 pc of the Sun. They identified 11 spatial structures based

upon a wavelet analysis, which provides overdensities on a given spatial scale

(a cut on velocity was also performed to find coherent stellar structures).

The structures are mostly known star clusters with 2–40 stars, occupying

regions of volume 5pc3–2×105pc3. For structures with less than ∼ 5 stars,

the Poisson noise is greater than the overdensity signal, and the result is

uncertain (Poisson statistics are used to quantify the variance of stellar den-

sities with location in space). Removal of these systems leaves 6 structures

with overdensities in the range δ=0.06–13 (in this case 6 stars were found in

a volume where 0.43 A-F dwarfs are expected to reside; a sphere of radius
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∼6 pc). Of these, five are on scales interesting to this work (∼104 pc3), and

their overdensities are in the range 0.06 < δ < 3.

Holmberg and Flynn (2000) also used a sample of A-F stars within 200

pc of the Sun to determine the vertical mass density of the disk in a given

region of sky, using a technique dependent upon vertical velocity compo-

nents. Inhomogeneities are produced by large-scale structures such as spiral

arms, as well as local structures such as star formation regions. Within this

region, they find a total mean mass density of 0.102±0.010 M�pc−3 within

200 pc of the Sun, and a total stellar mass density of ∼0.044 M�pc−3, based

upon Hipparcos, HST and local density counts. The stellar number density

is found to be ∼0.023 pc−3. As well as the ∼10 per cent uncertainty in

the total mass density, obtained from uncertainties in measured parameters,

Figures 6 and 7 from Holmberg and Flynn (2000), which display the vertical

distribution of A and F stars and their best-fits, can be used to determine

the magnitude of individual inhomogeneities. As above, they are typically

of size δ = 0.1–0.3. These values will be taken as representative of the

magnitude of density variations throughout the stellar disk.

Heating of the Galactic disk is caused by many effects, including the

deposition of energy by transiting subhalos. Benson et al. (2004) uses N -

body simulations and semi-analytic calculations to reproduce the observed

distribution of disk scaleheights using subhalo heating and scattering of stars

via molecular clouds. A Milky Way-like disk is predicted to be heated from

a thin disk to one with h = Rd/Rv∼ 0.2 (where Rd and Rv are the radial and

vertical disk scale lengths, respectively), consistent with the calculations of

Mendez and Guzman (1998) and the models of Dehnen and Binney (1998)

that obtain h=0.18±0.05. Local heating leads to a global increase in disk

scaleheight via mixing of individual heated stars with external, unheated

stars (galaxies are observed to have uniform disk scaleheights with radius,

de Grijs and Peletier 1997).

Locally, other heating effects, such as scattering by molecular clouds,

must be quantified and characterised to avoid confusion with real subhalos.

Lacey (1984) calculates the disk heating due to scattering of stars by a

cloud of mass, Mc. Assuming the cloud scaleheight is less than the disk,

the evolution of the stellar velocity dispersion with time can be described

by (from Eqns (55)–(56), Lacey 1984),
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σ(t) =
(

2tα+ σ4
0

)1/4
, (5.4)

where σ0 is the unperturbed dispersion, and α∝McΣc, is a collection of con-

stants including the cloud mass, surface density of clouds and the vertical

epicycle frequency, with the approximate value, α≈1017m4s−5 in our Galaxy.

Given this expression, one typically massive molecular cloud (Mc=6×105M�)

in a region of 100 pc2 will increase the velocity dispersion by 50 per cent

over 108 years. (Note that this calculation is based upon the dynamical

friction mechanism where there is a preferred direction and 〈v〉 6= 0, unlike

the diffusion calculation of Wielen (1977) which assumes isotropic diffusion

in velocity space, 〈v〉 = 0).

The assumption of a Gaussian velocity dispersion in the vertical direction

is also a simplification. The sample of Holmberg and Flynn (2000) shows

an excess of stars with lower velocities than expected from a normal distri-

bution, and hence a deficit at higher speeds. This discrepancy is typically

at the 10–20 per cent level.

As well as a study of the distribution of stars in stellar associations, there

are other factors affecting these results. Firstly, A-F dwarfs are typically an

older stellar population and therefore have had sufficient time to diffuse from

their original birth clusters. One would expect younger O and B type stars

to have different clustering properties as they have not had sufficient time

to mix out. There is also the issue of the overall density distribution of the

disk, which can vary by a factor of ∼30 radially, from the centre to the outer

disk edge. In addition, the disk density profile is not a pure exponential.

López-Corredoira et al. (2004) use 2MASS, MSX and ATCA/VLA data to

investigate the large-scale (several kiloparsecs) deficit of old and young stars

with respect to a pure exponential disk model, 2–4 kpc from the Galactic

centre, on the mid-plane. Such a deficit will not cause confusion with the

signatures of a subhalo transit because it occurs over a large region and is

axisymmetric, suggesting it is caused by an intrinsic effect. More critical is

the smaller scale (∼100s pc), localised clumpiness discussed above.

Given these results, a threshold overdensity of at least δ=0.4, to exceed

the background clumpiness of the stars, and departures from Gaussian ve-

locity dispersions of at least 50 per cent, to exceed the dispersion due to

molecular clouds, are required to separate the signatures of a real subhalo
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transit from natural disk inhomogeneities.

5.6 Probability of subhalo transit

5.6.1 Analytic considerations

There will be a given mass of subhalo above which the disruption to the

stellar orbits will be detectable. The likelihood of objects above the mini-

mum mass passing through the disk at any one time need to be calculated.

Assuming the mass function of subhalos is a power law (this is discussed

below), the number density can be represented by,

dN = αM−βdM (5.5)

where α and β are constants found from numerical simulation.

One can ask what the probability is that, at any given time, a subhalo of

massM >Mmin is lying within the disk. To simplify matters, let all subhalos

move at the same speed at all times (simple harmonic motion could be used

for a better estimate, but semi-analytic modelling discussed in Section 5.7

shows this assumption to be adequate, as most subhalos transit the disk with

similar speed). Then, the probability that one particular subhalo is within

the disk is simply the ratio of disk volume to the volume of the sphere

containing the subhalo orbits. The probability for all subhalos combined is

then this ratio multiplied by the number of subhalos with mass greater than

the minimum,

P (M >Mmin,indisk) =
Vd
VT

× n(> Mmin) (5.6)

=
Vd
VT

×
∫ ∞

Mmin

αM−β dM (5.7)

=
Vd
VT

(
α

β − 1
M1−β

min ). (5.8)

In reality, the disk passage will occur at the maximum in the subhalo’s speed

and so the actual probability will be less than this simple ratio.

5.6.2 Numerical results

Springel et al. (2001) simulated a cluster of galaxies and produced a mass
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function for subhalos within the primary potential. Although their results

are presented graphically, we extract the values for α and β,

α ∼ 1011M�, β ∼ 1.9,Mcluster = 1015M�. (5.9)

Scaling Mcluster down to a Galactic mass of ∼1012M� changes α to ∼108M�,

giving

P (M >Mmin) =
Vd
VT

(108M−0.9
min ). (5.10)

For a typical galaxy with a disk of radius 20 kpc and thickness 500 pc, the

volume ratio is ∼ 0.02. Hence, there need to be ∼50 subhalos with mass in

excess of the minimum for a good chance of detection.

Zentner and Bullock (2003) undertook simulations to investigate the

merger rates, destruction probabilities and substructure properties of galaxy-

mass halos with different input power spectra. They find a mass function

with the form,
df

dx
=

(

x

x0

)−α

exp

(

− x

x0

)

(5.11)

where f is the number of subhalos with normalised mass, x ≡ M/Mhost,

α = 0.6 and x0 = 0.07 ± 0.05, and the host mass varies between 1011 and

1013M�. The integral of this function gives the mass in subhalos greater than

the minimum mass. This expression gives ∼80 subhalos with greater mass

than 108M� in a 1012M� host halo. If the minimum is 107M�, this becomes

∼330 subhalos. Figure 5.4 displays this graphically for the results of Springel

et al. (2001) for β = 1.8, 1.9. There are few subhalos with M > 109M�.

Hence, if the minimum subhalo mass that is detectable is large, there will

be few available for detection, and fewer in the disk itself, at any one time.

If 50 subhalos are required to have mass in excess of the minimum, these

results suggest that Mmin.2×108M� must hold for detection.

The estimate of the subhalo’s speed and fractional time within the disk

is investigated in more detail in the next section, with semi-analytic results

for the evolution of subhalos.

5.7 Semi-analytic results for Milky Way-like halos

Semi-analytic methods are useful for investigating the statistical properties

of halo mergers and tidal stripping since they do not require the compu-
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Figure 5.4: The number of subhalos with mass greater than M , as a function
of mass, for two values of the power law exponent, β = 1.8 (dashed) and 1.9
(dotted), in a 1012 M� halo.

tational power of full N -body simulations. They take the Press–Schechter

formalism for the distribution and masses of dark matter halos and ran-

domly generate halos merging and interacting with other halos and subha-

los. Each halo is assigned a disk and bulge component and their orbits are

integrated forward in time under the influence of the mean gravitational

force, as well as dynamical friction due to the different components. Mass

loss and tidal heating are investigated by calculating the halo’s tidal radius

at each timestep and removing material beyond this radius.

Benson et al. (2002) details semi-analytic models used to study the effects

of a photoionising background on galaxy formation. These models are based

upon the earlier work of Cole et al. (2000) and include an improvement

developed by Taylor and Babul (2001) of tidal stripping of satellites. The

dark matter results for semi-analytic subhalos, kindly provided by Andrew

Benson, will be used to determine the expected mass and spatial distribution

of subhalos in a Milky Way-like halo.

Benson’s code assigns a mass, energy, angular momentum and orbit to

a satellite and integrates forward from its apocentric distance (where the

tidal effects of the main halo are smallest). The initial energy and angular
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momentum are chosen using global parameters of the host halo (e.g. its virial

radius) which are consistent with those observed inN -body simulations. The

dark matter halos are modelled as NFW halos (Navarro et al. 1996), suitably

altered by adiabatic contraction due to the baryonic component, and the

disk and bulge by exponential and de Vaucouleurs profiles. At each point in

the orbit, the radius at which the tidal forces from the main satellite equal

the self-gravitating force within the subhalo, is calculated, along with the

effect of dynamical friction on the different components (Benson employs the

Chandrasekhar formula here) and any heating due to shocks as components

cross. The mass loss at each step is therefore calculated and mass is removed

in spherical shells.

The output of the code provides the mass, density profile, time, location

and speed of the subhalo at each disk crossing. Only the results for Milky

Way-like halos will be considered (bulge to bulge+disk mass ratio is 5–

20% and vdisk = 210 − 230kms−1). Given the N -body results for the mass

function of dark matter subhalos described in Section 5.6, Benson’s results

can provide insight into the frequency of disk transits, and the subhalo’s

speed and mass loss. These are critical for ascertaining the abundance of

detectable subhalos in the Galactic disk today.

Benson has produced tables of some of the host halo - subhalo interac-

tions in his simulations. He has chosen a few interesting examples where

the mass, speed and position of the subhalo is traced over several disk cross-

ings. Interestingly, these subhalos can pass within a few kiloparsecs of the

Galactic centre and with high frequency (crossing times ∼100 Myr), making

them easier to detect; they are in a high stellar density region more often.

Some will of course have much longer periods and larger impact parameters,

but these initial results are encouraging. The major drawback evident from

these results is the rapid loss of mass from the subhalo, since the magni-

tude of the dynamical friction heating scales with mass. The first few disk

crossings can strip >99 per cent of the mass.

In order to properly characterise the subhalos, many of these output

files are required to build-up a statistical view of the masses, crossing times,

speeds and impact parameters. In the first instance, a few examples will

be used to determine the viability of detecting a subhalo. A positive result

would then warrant a deeper investigation.

Below are presented results for one subhalo followed in the simulation
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Figure 5.5: Mass of subhalo vs time. The subhalo rapidly loses mass and
then stabilises.

for about 1 Gyr. The subhalo’s mass, speed and impact parameter from the

Galactic centre for each passage through the disk are plotted. This subhalo

began with 1.4×1010M� in the simulation and crosses the disk once every

∼20 Myr in the period of time shown.

The points in the figures each represent a passage of the subhalo through

the disk. They are:

• Figure 5.5: Mass of subhalo vs time. The subhalo rapidly loses mass

and then stabilises.

• Figure 5.6: Position of subhalo vs time. This is the distance to the

Galactic centre from the subhalo’s passage point in the disk.

• Figure 5.7: Speed of subhalo as it passes through the disk mid-plane

as a function of time. Each point represents one disk passage.

• Figure 5.8: Time between impacts (Myr) vs time. As the subhalo

slows, its crossing time reduces.

The critical information to be taken from these results are:

• the rapid mass-loss the subhalos undergo as they transit the disk.

Figure 5.5 shows that a 109 M� subhalo will lose ∼90 per cent of

its mass within 1 Gyr. This would reduce the subhalo to have mass

∼ 108M�, and move from a potentially detectable signal to being

undetectable with GAIA (see results for these masses later in Section

5.9);
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Figure 5.6: Position of subhalo vs time. This is the distance to the Galactic
centre from the subhalo’s passage point in the disk.

Figure 5.7: Speed of subhalo as it passes through the disk as a function of
time.

• the speed of the subhalo at disk transit — all results point to a value

of v ∼ 200kms−1 being representative of the simulation results (100–

300kms−1 observed from Benson’s simulations);

• fractional time spent within disk — the simplified estimation of 0.02

presented above is reasonable.

Given these values, the original estimation of the required number of

subhalos in the potential is reasonable. In order to have at least one suffi-

ciently massive subhalo in the disk at any given time, the minimum mass

must be less than ∼2×108M�, as discussed in Section 5.6.2.

The phase-space signatures due to point-mass and extended subhalos of
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Figure 5.8: Time between subhalo transits of the disk (Myr) vs time. As
the subhalo slows via friction and its apogalacticon decreases, its crossing
time reduces.

different mass will now be investigated.

5.8 Point mass subhalos

The overdensity produced by a point-like object can be calculated. In his

Appendix IV, Mulder (1983) derives an approximate functional form for the

overdensity compared with the background. This approximation is sufficient

for our purposes and is simple to compute. It is:

δ =
ρ− ρ0

ρ0
=
GM

rσ2
0

exp

[

−p
2

2
(1 − µ2)

] [

1 − erf

(

pµ√
2

)]

(5.12)

where M is the mass of the compact object, p≡v0/σ0 is the Mach number,

µ≡cos(θ) and ‘erf’ is the standard error function. The density distribution

is obviously axisymmetric about the axis of the object’s motion and so δ is

best written in cylindrical co-ordinates where the z-axis is defined to be the

direction of motion of the compact object.

A threshold overdensity is required according to the quality of obser-

vational data in the spatial domain. A subhalo speed of v0=200 kms−1 is

assumed following the results from semi-analytic models (Section 5.7). This

gives a Mach number of p=10 for a velocity dispersion of σ0=20 kms−1.

In this high speed, high mass-ratio regime, the overdensity is highly colli-
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Figure 5.9: Spatial overdensity contours for stars behind a compact object
of mass 107M� with p≡v0/σ0 = 10. The equidensity contours are collimated
due to the speed difference between the point mass and the test particles,
and the few parsecs behind the point mass have significant overdensities,
δ ∼ 10.

mated behind the object. Above is plotted the overdensity contour map for

a subhalo mass of M=107M� in Figure 5.9. The inner few parsecs have

overdensities δ ∼ 10. The ratio of radial to axial distance of the equiden-

sity contours is independent of mass (dependent upon p) and has a value of

0.06 at their respective maximum values. The overdense region is therefore

highly collimated.

In the velocity domain, a star passing reasonably close to a 108M� com-

pact object [bmax ∼ 1pc(M/108M�)2(V0/200kms−1)−4] approaching at 200

km/s, will gain ∼200 kms−1 in speed (∆vm ∼ V0). So, for very massive

objects one would expect to see a shift of the velocity centroid of the stellar

DF to that of the object’s, in the rest frame of the galaxy, easily exceeding

the GAIA uncertainties.
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5.9 Real subhalos — extended mass distributions

Real subhalos are not compact objects, according to the results of N -body

simulations. Their distributed nature will reduce their ability to disperse

and accelerate stars. N -body simulations of the collapse and virialisation of

dark matter halos (e.g. Navarro et al. 1996) find a nearly universal spherically

averaged density profile. This profile is universal in the sense that only the

scale length changes according to collapse redshift, but the overall shape

remains the same — density as a function of radius follows r−1 in the inner

regions, and r−3 in the outer.

In order for the acceleration due to the potential to be derived analyti-

cally, a slightly altered profile will be used in the simulations. This profile,

ρ(r) ∝ 1

r
rs

[

1 +
(

r
rs

)2
] , (5.13)

has the same asymptotic features as the NFW, and the same scale radius, rs.

This scale length is chosen such as to match semi-analytic models of subhalos

in a Galactic potential (see Section 5.7). Given that the cooling of baryons

to form a disk in such an object should produce adiabatic contraction of the

halo (Blumenthal et al. 1986) and thus alter this profile, the small difference

between Equation (5.13) and the NFW result is negligible.

The effect of this subhalo on disk stars is modelled in a simple simula-

tion that tracks the orbits of test particles (stars) moving in the combined

potential of a disk plus subhalo. A 3D distribution of stars is constructed

by randomly placing particles in a planar disk with a thickness of 500 pc.

The initial velocities of the stars are all chosen to have Maxwellian velocity

dispersion in all three velocity components, as well as a circular rotation

determined by their position in an exponential disk.

The Cartesian co-ordinates of the disk, x and y, lie in the disk plane,

and z is normal to the plane. The simulation is performed in the subhalo’s

rest frame (co-ordinates X, Y and Z), whereby the stars all begin with

vZ = −vsub, vX = vcirc/
√

2, vY = vcirc/
√

2 with vsub the subhalo’s speed

and vcirc the circular rotation speed (see Figure 5.10 for an explanation of the

co-ordinate system). The subhalo begins at the disk edge and moves normal

to the plane of the disk. This is an idealised trajectory for the subhalo, and

is employed for computational simplicity. Until the size of a potential signal
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Figure 5.10: Co-ordinate system for the simulations (observer, red, looking
through the disk; subhalo, hashed). Lower case letters refer to the station-
ary observer’s frame viewing the rotating galaxy from the outside. The
upper case letters refer to the subhalo’s frame, in which the simulations are
performed.

is obtained with this simple simulation design, it is not worthwhile pursuing

more complicated models. The subhalo remains a static potential that does

not respond to interactions with the stars.

The combined potential of disk and subhalo is used to calculate each

star’s acceleration. The stars obey the equations of motion (in the subhalo

rest frame),

aX = −MG

2R2

ln [1 + (R/rs)
2]

lnA/rs

X

R
R̂− v2

c

r

X + x′

r
r̂, (5.14)

aY = −MG

2R2

ln [1 + (R/rs)
2]

lnA/rs

Y

R
R̂ − v2

c

r

Y + y′

r
r̂, (5.15)

aZ = −MG

2R2

ln [1 + (R/rs)
2]

lnA/rs

Z

R
R̂, (5.16)

where the first term in Equations (5.14)-(5.15) is due to the subhalo [cal-

culated by integrating Equation (5.13) for the mass enclosed within a given

radius and letting aR = −GM(< R)/R2] and the second is due to the disk

potential. M is the total mass of the subhalo, R is the vector from the
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subhalo centre to the star, A is a sufficiently large radius to contain all of

the subhalo mass, r′ is the position of the subhalo relative to the galaxy

centre, r = R + r′ is the position of the star from the galaxy centre, and

vc is the circular speed at 0.6rd due to an exponential disk (see Equation

(2-169), Binney and Tremaine 1987). The Z component of acceleration has

no circular rotation component.

Each timestep sees each star’s velocity increment by (in the X direction)

vX(i+ 1) = vX(i) + aX(i)∆t, and position by, X(i+ 1) = X(i) + vX(i)∆t,

where ∆t is the time step, for each component. With hindsight, a high

order Runge-Kutta approach would have followed the orbits more accurately,

however since the exact orbits are not required and the time integration not

too long (6000 timesteps), this approach is acceptable. After a sufficient

response time, the system reaches equilibrium with as many stars entering

as leaving the subhalo’s region of influence. This time is experimentally

found to be ∼105 years (for a subhalo that transits the disk in ∼106 years).

The simulation is not realistic in the sense that the stars do not feel each

other’s potential and the subhalo does not experience tidal effects, however

since we are interested in the heating of stars, a full N -body simulation is

not required (star-star interactions are inferior to star-subhalo interactions

as discussed in Section 5.9.1 and therefore this idealisation is acceptable).

The timestep, ∆t, must be sufficiently small for the orbits to be repre-

sentative of a true disk, but long enough to keep the computation tractable.

A timestep of 50 years was found to be sufficient — doubling the time did

not change the results (within Poisson errors). A realistic value for the back-

ground stellar density is desired in order to probe the overdensity statistics

as accurately as possible, and the values from Holmberg and Flynn (2000)

are used.

The parameters that can be varied in the simulation are the total subhalo

mass, M , the scale radius, rs, the stellar velocity dispersion, σ0, and the

subhalo speed, vsub. The scale radius, rs, will be fixed at 10 pc, and the

subhalo’s speed, vsub = 200 kms−1, consistent with the stripped subhalos of

Benson’s simulations.

5.9.1 Relaxation time

Two-body relaxation between stars will redistribute the energy obtained

from the subhalo throughout the disk. Binney and Tremaine (1987) derive
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a simple approximation for the timescale for such a process. Since the

simulations do not treat star-star interactions, they are only representative

of reality if the timescale for such interactions is long compared with the

longevity of the overdensity effect or the time it takes for the subhalo to

transit the disk. Otherwise the energy may be quickly dispersed into the

surrounding stellar field, and the observational effect will be quite different

to that predicted by the simulations.

Binney and Tremaine (1987) derive the two-body relaxation timescale

based upon the density of stars and the crossing time of the system. This

expression, dependent upon the number of stars in the system, N , is longer

than the crossing time for N & 35 and is given by,

trelax =
NR

8v lnN
≈ 0.1N

lnN
tcross, (5.17)

where R and v are the characteristic size and internal speed of the system,

and tcross is the crossing time. Hence, for a galaxy with 1011 stars, the

relaxation time is trelax≈1010 years. This is the characteristic time for a star

to lose half its initial momentum to field stars via two-body interactions. In

the overdense region, this redistribution of energy will occur more rapidly,

since the star-star impact parameters are, on average, smaller than in less

dense regions. As we will see, however, the overdensities predicted by the

simulations are δ ∼ 1 (double background density), reducing this timescale

by only a factor of two.

Hence, two-body relaxation will not produce any observable effect over

these timescales (∼106 years) and the simulations are therefore representa-

tive of reality although they do not calculate star-star interactions.

5.10 Spatial density signatures

Identifying the spatial effects of a subhalo requires careful use of the phase-

space information available. A subhalo of a given mass will influence its

surroundings according to its mass and spatial configuration. As such, the

average overdensity in apertures of various size will be investigated, thereby

optimising any potential signal.

The limiting factors for detecting subhalos will be the ability of GAIA

to accurately determine distances to stars, and, given that distance uncer-
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tainties do exist and increase for fainter stars, will force large distance stars

to be unusable. As a consequence of this distance uncertainty, the volume

of the disk available for use will decrease, making detection less likely.

As discussed in Section 5.4, the uncertainties in stellar distances ap-

proach 100 per cent for most stars beyond 5–10 kpc. Figure 5.3 showed the

percentage of stars available for use at a given distance for a V=15 cutoff.

Figure 5.11 shows the uncertainty in the distance measurements for the same

sample. For example, at a distance of 3 kpc (which is a larger cross-section

Figure 5.11: Uncertainty in distance measurement (parsecs) as a function of
distance from the Sun for stars with V=15 using results from Table 5.1. By
d = 3 kpc where only 10 per cent of stars are available for use (see Figure
5.3), the uncertainty is 3 per cent, or 110 pc.

of the disk than at 1 kpc), only stars with MV < 2.5 are available, and their

distance uncertainty is ∼100 pc.

To establish the largest overdensity measurable for a subhalo of given

mass, the average overdensity will be calculated in regions of different size

around the subhalo location. To mimic distance uncertainties in the real

data, the regions in the simulations from which results are taken are en-

larged to match the distance error (e.g. a region of depth 500 pc is used
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to represent a distance error of 500 pc), thereby scattering unwanted stars

into the region of interest and diluting the signal. This will be accomplished

by considering cylindrical regions where the depth of the cylinder is the

distance uncertainty.

Both a perfect experiment, where all stellar distances are known (and

the region studied is a sphere), and an imperfect experiment, where the

GAIA uncertainties are included (and the region studied is a cylinder) will

be performed for comparison. Figure 5.12 computes the overdensity for

stars within a spherical region, centred upon the subhalo, as a function of

the radius of the sphere, to find the largest overdensity. This is a perfect

experiment with no distance uncertainties. Figures 5.13 and 5.14, on the

other hand, compute overdensities as a function of projected radius from

the subhalo centre, and in a line-of-sight region 75 pc and 100 pc thick,

respectively (i.e. distance uncertainties of ∆d=75, 100pc). Note that

Figure 5.12: Predicted overdensity, δ, as a function of spherical radius. The
three lines correspond to (from top to bottom) subhalos of mass, Msub = 109,
5×108, 108 M�. The horizontal line at δ=0.4 is the threshold overdensity
as discussed in Section 5.5.

the overdensities are much smaller than those found for the 107 M� point

mass in Section 5.8 and are best observed over a larger region (due to the

extended subhalos’ more distributed nature). The horizontal line at δ = 0.4

corresponds to the threshold value due to confusing intrinsic overdensities,
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Figure 5.13: Predicted overdensity, δ, as a function of cylindrical radius, for
stars within 75 projected (line-of-sight) parsecs of the subhalo. The three
lines correspond to (from top to bottom) subhalos of mass, Msub = 109,
5×108, 108 M�. The horizontal line at δ=0.4 is the threshold overdensity
as discussed in Section 5.5.

as discussed in Section 5.5.

Results are shown for three subhalo masses, namely M = 108, 5×108,

and 109M�. Poisson uncertainties are also calculated and added to the fig-

ures to characterise the variance in background stellar density with position.

These uncertainties are prominent in regions where few stars are found. The

minimum stellar population labelled an overdensity here has 54 stars within

a 5 pc aperture, where the background has 41 (108M� subhalo).

In the perfect case where the stars’ positions are known precisely (Figure

5.12), both the 5×108M� and 109M� subhalos produce overdensities that

exceed the threshold and would be detectable. The 108M� subhalo lies in

the confused region. As the uncertainty on distance is increased from zero

in the next two figures, the 5×108M� subhalo falls below the threshold, and

the 109M� is barely detectable. In addition, these calculations include all

stars in the galaxy, not just the most luminous. The effect of the luminosity

cutoff will now be discussed.
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Figure 5.14: Predicted overdensity, δ, as a function of cylindrical radius, for
stars within 100 projected (line-of-sight) parsecs of the subhalo. Symbols
have the same meaning as in Figure 5.13.

5.10.1 Effect of distance uncertainties

The simulations show that the maximum distance uncertainty that the real

data can have before these subhalos are no longer detectable above the

δ = 0.4 threshold are: for the 5×108M�, ∆dmax ∼ 20 pc, and for the

109M� subhalo, ∆dmax ∼ 120 pc.

One can now ask how far the subhalos can be from the observer before

the distance uncertainties exceed these values. Clearly, brighter stars will

reach this limit at a larger distance than fainter stars (see Table 5.1). The

brightest class of stars in the Galaxy, 0 < MV < 2.5, will therefore be

used. These account for 10 per cent of the total population (see Table

5.2) and therefore are numerous enough to produce reasonable statistics

(i.e. low Poisson noise in star counts) while being bright enough to be

visible at large distance. At 1, 3 and 10 kpc, these stars have apparent V-

band magnitudes of (10–12.5), (12.5–15) and (15–17.5), respectively, with

associated uncertainties according to Table 5.1. Given this information, and

the maximum distance uncertainties quoted above, Table 5.3 displays the

largest distance to a subhalo before it is undetectable, as a function of mass.

Both subhalo masses are only observable within a few kiloparsecs of the Sun.
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Mass Max. Uncert. Max. Dist.

M� pc kpc

5×108 20 2
109 120 4

Table 5.3: Largest distance a subhalo can be from the observer before the
uncertainties in the distances to stars predicted for the GAIA satellite, ex-
ceed the maximum uncertainty allowable for a subhalo of a given mass, M ,
to produce an overdensity in excess of the δ = 0.4 threshold.

5.10.2 Available fraction of disk

The uncertainty in the distances to stars, particularly beyond ∼5 kpc, re-

duces the subhalo signal significantly. Table 5.4 summarises the maximum

distance to a subhalo before it becomes undetectable, and includes an esti-

mate of the fractional volume of the disk in a detectable region. Given the

Mass Max. Dist. δ Best Aperture Disk Volume No. Reqd

M� kpc pc %

5×108 2 0.50 20 1.2 4000
109 4 0.48 20 8 600

Table 5.4: Results for the spatial overdensities of stars for a given subhalo
mass. The radius of the cylindrical aperture where the best overdensity is
found is given, and the maximum distance from the Sun the subhalo can
be before it falls below the detection limit. Given these values, only a small
fraction of the disk volume is available. The final column lists the number
of subhalos of a given mass or greater required to reside in the Galactic halo
for one to be expected to pass within the maximum distance.

small disk fractions, the number of subhalos one requires for it to be likely

that a subhalo is passing within the maximum distance becomes quite large.

Assuming that the disk occupies 2 per cent of the halo’s volume and 8 per

cent of the disk is available (Table 5.4), there needs to be ∼1/(0.02×0.08)

∼ 600 subhalos with M > 109M�. As shown is Section 5.6.2, this number

is two orders of magnitude more than expected from N -body simulations.

Spatial signatures therefore appear to be too weak to be detected with the

uncertainties of GAIA.
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5.11 Velocity signatures

A subhalo transit shifts and broadens the velocity distribution function.

This signal will be most evident in the stars closest to the subhalo, and in

the Z-component of the velocity (this is where the bulk of the momentum

is transferred since the perpendicular kicks on any individual star add up to

zero over time). A spatial cut is therefore used to isolate such a region.

Stars will be both accelerated toward the subhalo and swept along behind

it, producing a broadened distribution function. Figure 5.15 plots the phase-

space positions (Z − vZ) of stars at the end of a simulation with a 1010M�

subhalo (large mass to exaggerate effect). The stars’ velocities have been

Figure 5.15: Contour plot of phase-space positions (Z − vZ) of stars at the
end of a simulation (observer’s frame in velocity). The subhalo has mass,
M = 1010M�. The red arrows show the direction of motion of the stars,
and the blue line denotes the subhalo’s spatial position. Contours are [1, 5,
20, 40, 100, 200] stars per 100 pc kms−1.

shifted to the observer’s frame (where they are centred around vZ = 0). As

the stars are accelerated toward the subhalo, their trajectories move from

positive Z values to zero, and their velocities become more negative. As they

pass Z = 0 (scatter past the subhalo), they decelerate again and return to

their initial position (see red arrows). In addition, since the subhalo is being
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slowed by the stars, its momentum is transferred to them and they attain,

on average, a velocity in the direction of the subhalo’s motion. Clearly, a

velocity cut in the region close to the subhalo improves the signal from this

wide distribution.

Accurate proper motions are required when measuring the Z-component

of velocity. Table 5.1 shows that for stars within 10 kpc, the change in

the stars’ Z speed is ∆vZ = 0.1–15 kms−1, dependent upon magnitude —

accurate compared with the distance uncertainties at 10 kpc. The isolation

of a spatial region requires good estimates of the stellar distances, and this

will again be the main source of uncertainty. However, if subhalos are able

to scatter stars to high speed, the number of bright stars observable at large

distance will also be a factor.

A population with a Maxwellian velocity distribution contains stars with

speeds above the escape speed for the system. These stars will evaporate

from the system and can mimic the subhalo scattering if the subhalo, due

to the uncertainty in stellar locations, cannot be localised to a particular

region (escaping stars are distributed uniformly, whereas the subhalo pro-

duces localised heating). Once these stars have escaped, this region of the

velocity distribution is re-populated over a relaxation time via two-body in-

teractions. Binney and Tremaine (1987) estimate that for a system with

one-dimensional velocity dispersion, σ, and a Maxwellian velocity distribu-

tion, the escape speed is v2
e = 4v2 = 12σ2 and that ∼ 0.7 per cent of stars

in the system have at least this speed. Hence, in a cylinder of, for example,

30 pc radius and 250 pc depth, there are ∼0.007×1010 × V/VT ∼ 300 high-

speed stars, where N = 1010 is the total number of stars in the Galaxy and

V/VT is the volume fraction of the disk in the cylinder. Hence, in a region

of this size, in excess of 300 stars would need to be heated by a subhalo and

then observed to be distinguished from stars in the high-speed tail of the

distribution function. This is another form of thresholding. To be confident

of the detection of a subhalo, the number of heated stars observed, Nstars,

needs to be greater than the number in the high-speed tail,

Nstars > 0.0014r2
pc∆dpc, (5.18)

where r is the cylinder’s radius, and ∆d is the distance uncertainty, both

expressed in parsecs. Note that evaporating stars will escape in random
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directions, not necessarily with a large velocity component in the direction

of the subhalo’s motion (here the Z axis), and therefore expression (5.18) is

a safe lower limit to the number that need to be observed.

Figure 5.16 displays the Z component velocity distribution function (in

the observer’s frame) for stars scattered from a 109M� (top left), a 5×108M�

(top right), and 108M� (bottom) subhalo, within 30 pc (XZ) of their cen-

tre, and at a line-of-sight distance of 30, 50 and 75 pc (Y , due to distance

uncertainties). Clearly, the 109M� subhalo distributes the stars the most

Figure 5.16: (Top left) Z component of the velocity distribution function of
stars (observer’s frame) for a 109M� subhalo. Curves are for stars within
a cylinder 30 pc in radius (XZ) and 30, 50 and 75 pc (dashed, lie on top
of each other) line-of-sight from the subhalo. Also shown are the original
distribution function (solid narrow) and an example distribution function
where σ = 1.5σ0 (solid broad, heating due to molecular cloud scattering).
(Top right) Same except for 5×108M� subhalo. (Bottom) Same except for
a 108M� subhalo.

efficiently in velocity space. The threshold velocity dispersion, σ = 1.5σ0,

due to scattering off massive molecular clouds (Section 5.5), is also shown for

comparison. Only the 109M� subhalo is able to heat stars more efficiently
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than molecular clouds, while the effect of a 5×108M� subhalo can be con-

fused with heating by molecular clouds. The 108M� subhalo is unable to

heat stars beyond the Maxwellian distribution with σ = 20 kms−1.

I will now concentrate on the two more massive subhalos and their ob-

servability over the high-speed tail of the distribution. As the uncertainty in

the distance to the subhalo increases, the number of stars in the high-speed

tail will increase and eventually exceed the number that are heated by the

subhalo itself.

For a range of distance uncertainties, the number of stars with speeds in

excess of the molecular cloud threshold (proper motion, |vZ | > 100 kms−1)

and the number of stars in the high-speed velocity tail in the same region

are calculated, according to the results from Binney and Tremaine (1987)

and Equation (5.18). This places a lower limit on the number of stars that

need to be measured to ensure the heating is caused by the subhalo. Figure

5.17 shows the total number of simulated high-speed stars in a region as a

function of distance uncertainty compared with the number of stars in the

high-speed tail of the DF. The 5 × 108M� subhalo can be detected with a

distance uncertainty up to 500 pc, since this is where the two curves cross,

and the 109M�, up to 2 kpc, before there are more stars in the high-speed

tail of the DF.

It remains now to compare these uncertainties with the GAIA predictions

of Table 5.1 to find the maximum distance the subhalo can be from the

observer before the uncertainties are too large. These results are shown

in Table 5.5. These distances are larger than those found for the spatial

Mass Max. Uncert. Max. Dist.

M� pc kpc

5×108 500 5
109 2000 8

Table 5.5: Largest distance a subhalo can be from the observer before the un-
certainties in the distances to stars predicted for the GAIA satellite, exceed
the maximum uncertainty allowable. At larger distance, there are too many
heated stars to distinguish between a subhalo heating and the high-speed
tail of the Maxwellian velocity distribution.

domain and the velocity domain is therefore more useful for the detection of

subhalos — the fraction of the disk available for subhalos to be found and

therefore the likelihood of detection, is larger.
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Figure 5.17: Number of stars with |vZ | > 100kms−1 as a function of uncer-
tainty in distance centred on the subhalo for the 5 × 108M� (short-dashed)
and M = 109M� (long-dashed) subhalo. Also shown are the number of
evaporating stars in the same cylindrical region (solid lines). The maximum
uncertainty for the 5×108M� (M = 109M�) subhalo is 500pc (2kpc) before
the subhalo is indistinguishable from the background of high speed stars.

5.11.1 Phase-space signature

Although there are sufficient high-speed tail stars in a cylinder of depth

2 kpc to exceed the number of stars heated by a 109 M� subhalo, only a

small percentage (0.3%) of stars in a Maxwellian distribution are more than

3σ from the mean. Hence, if the subhalo can heat stars to a higher speed

than expected for a Maxwellian distribution, they may be distinguished from

background stars. This can be investigated by plotting the Z − vZ phase-

space distribution and adding the effects of heating by molecular clouds, the

GAIA distance uncertainties and the GAIA proper motion uncertainties in

turn.

Figure 5.18 displays the phase-space stellar distributions for the 109 M�

(left column) and 5×108M� (right column) subhalo. The contours for each

plot are [1, 10, 100, 1000, 10000] stars per 100 pc kms−1. The top row

shows the density of stars at the end of the simulation with the Z velocity
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dispersion set to the background value of σ = 20kms−1 and for stars within

500 pc (projected) of the subhalo. Both the subhalos show heating of the

stars here.

The second row adds heating due to molecular clouds, here modelled by

adding stars with σ = 30kms−1 (note that uniform heating across the disk

would not occur as shown here — this plot is intended to show the magnitude

of the effect and so the heating is plotted uniformly). The heating due to

the 5×108M� subhalo is masked by this molecular cloud heating (also seen

in Figure 5.16).

The final row shows the results for a 109 M� subhalo placed at 20

kpc from the Sun where the following effects have been added: (i) 90 per

cent of the stars at the subhalo distance have been removed since only the

brightest are now observable by GAIA, (ii) the molecular cloud heating with

σ = 30kms−1 is included (with a larger column through the disk at a dis-

tance of 20 kpc, the probability of molecular cloud heating increases), and

(iii) the proper motion measurements (vZ) of stars at the subhalo location

are Gaussian smeared to ∆vZ = 30kms−1, in accordance with the GAIA

predictions from Table 5.1. Hence, the combination of these effects almost

masks the subhalo heating signal (a small excess of stars at the known loca-

tion of the subhalo is still visible here). For distances less than 20 kpc, the

subhalo signal becomes stronger as the GAIA measurements improve.

These results suggest the velocity domain is more useful than the spatial

to isolate subhalos moving through the Galactic disk. The disk volume

fraction within 5–8 kpc of the Sun is 10–20 per cent. This still requires

∼100–300 subhalos of sufficient mass to expect one to be passing through this

region now. For a 5×108M� subhalo, this figure is still an order of magnitude

too high. For a 109 M� subhalo at 20 kpc, the subhalo distance cannot be

determined, the proper motion uncertainty is large (∼ 30kms−1) and only

a small fraction of stars are bright enough for observation. Unfortunately,

there is a ∼10 per cent chance of a subhalo with such high mass being within

the Milky-Way disk at any one time. Therefore, although a 109 M� subhalo

may still be observable at a distance of 20 kpc, there are too few to expect

one to be observed.
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5.12 Discussion & conclusions

If massive black holes threaded the disk, these would have an observable

effect with GAIA, but the extended nature of true subhalos makes detecting

this effect an extremely difficult task, primarily due to GAIA uncertainties

combined with the expected small number of massive subhalos close to the

Sun in the disk (∼10 per cent chance of a 109 M� subhalo being within

20 kpc of the Sun and within the disk). Confusion plays a lesser role in

reducing any potential signal.

The velocity domain was found to produce more prominent signatures

than the spatial domain, due to the subhalos’ efficiency at scattering stars

to very high speeds. In the spatial domain, a 5×108M� subhalo would need

to move within 2 kpc of the Sun for detection, and a 109M� subhalo within

5 kpc. In the velocity domain, where proper motions are well measured by

GAIA, they would be observable to ∼5 kpc and ∼20 kpc, respectively. In

both cases the limiting factor is the GAIA distance determination uncer-

tainty, and the lack of very bright stars (MV < 0) in the Galaxy.

The results presented above are also likely to be the best case scenario.

Assuming the subhalos remain spherically symmetric during all transits

overestimates their dynamical influence since the majority of the mass re-

mains in a compact region. Subhalos are rapidly stripped by tidal interac-

tions into long streams (see for example, Majewski et al. 2003), reducing

their sphere of influence as they are stretched into a lower density stream.
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Figure 5.18: Contour plots of Z − vZ phase space for stars in the disk at
the simulation end. The left (right) column shows results for the 109 M�

(5×108M�) subhalo. The rows show: (top) contours for background stellar
velocity dispersion, σ = 20kms−1 and stars within 500 pc (projected) of the
subhalo location; (centre) inclusion of molecular cloud heating modelled as
heating of disk to have σ = 30kms−1; (bottom) subhalo placed at a distance
of 20 kpc where the proper motion uncertainty is ∆vZ = 30kms−1, only ∼10
per cent of stars are bright enough to be observed and the probability of
molecular cloud heating is high. All plots have contours of [1, 10, 100, 1000,
10000] stars per 100 pc kms−1.
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CHAPTER 6

Collapsed and Extended CDM Halos in Softened N -body

Gravity

The statistical mechanics of N cold dark matter (CDM) particles interact-

ing via a softened gravitational potential is reviewed in the microcanonical

ensemble and mean-field limit. A phase diagram for the system is computed

as a function of the total energy E and gravitational softening length ε. For

softened systems, two stable phases exist: a collapsed phase, whose radial

density profile ρ(r) is a central Dirac cusp, and an extended phase, for which

ρ(r) has a central core and ρ(r) ∼ r−2.2 at large r. It is shown that many

N -body simulations of CDM halos in the literature inadvertently sample the

collapsed phase only, even though this phase is unstable when there is zero

softening. Consequently, there is no obvious reason to expect agreement

between simulated and observed profiles unless the gravitational potential

is appreciably softened in nature.
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6.1 Introduction

Cold dark matter (CDM) theory successfully describes many aspects of the

formation of large-scale structure in the universe (Peebles 1982; Davis et al.

1985). However, mismatches do exist between its predictions and obser-

vations, such as the cusp-core controversy, missing satellites (Klypin et al.

1999; Moore et al. 1999a) and the angular momentum (Navarro and Benz

1991; Thacker and Couchman 2001) problems. In particular, the cusp-core

issue has provoked much debate. CDM simulations consistently yield den-

sity profiles with steeper inner slopes (power-law exponent between −1 and

−1.5) than observational studies which have found a range of slopes, includ-

ing constant density cores in dark matter dominated low surface brightness

galaxies (de Blok et al. 2001b) and shallow slopes in clusters with gravita-

tionally lensed arcs (Sand et al. 2004). These results, among others, have

initiated discussion about the role of baryons in softening simulated cores

(Athanassoula 2004; Shen and Sellwood 2004) and the observational effects

that may mask cusps in low surface brightness galaxies (de Blok et al. 2001b;

Swaters et al. 2003). Recent N -body results demonstrate that, at the current

resolution of simulations, the central power-law exponent does not converge

to a universal value (Navarro et al. 2004), but may be becoming shallower

closer to the centre.

In numerical simulations, a softened gravitational potential is used to

prevent the macro-particles (105–107M�) from experiencing artificially strong

two-body interactions (Navarro et al. 1996,for example). The softening

length, ε, is chosen to maximise the resolution while suppressing two-body

effects over the simulation running time. In view of the ongoing disagree-

ment regarding the form of ρ(r), it is important to clarify analytically, by

a code-independent argument, whether the choice of ε affects the physics of

the system and hence ρ(r). In this work, the framework of statistical me-

chanics is employed (Padmanabhan 1990), drawing upon recent results on

phase transitions in N -body systems with attractive power-law potentials

(Ispolatov and Cohen 2001; de Vega and Sánchez 2002). Self-gravitating

particles behave qualitatively differently to many other statistical systems

because gravity is an unscreened, long-range force. They are best exam-

ined within the microcanonical ensemble, where the energy and number of

particles are fixed and phases with negative specific heat are allowed. The
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results of the classical theory of self-gravitating, N -body systems are applied

to demonstrate the effects of introducing a short distance cutoff in numerical

simulations (in particular the effect on stability).

The study of the thermal stability of self-gravitating systems has a long

history. Lynden-Bell and Wood (1968) showed that spherical systems of

point particles in a box with reflecting walls are gravitationally unstable

below a critical temperature, collapsing catastrophically to a central point.

Aronson and Hansen (1972) generalised this work to a spherical system of N

classical hard spheres in contact with a heat bath, showing the gravothermal

instability to be a general feature of self-gravitating systems held at a con-

stant temperature. Hertel and Thirring (1971), investigating point fermions

obeying the Pauli Exclusion Principle, showed that a stable low temperature

phase can exist if the gravitational potential is softened, transforming the

gravothermal instability to a phase transition to the low temperature phase.

In this chapter, these results are extended and used to reinterpret some

of the ambiguous results of numerical simulations of CDM halos discussed

above. A detailed comparison with preceding analytic work is presented in

Section 6.3.2.

Section 2 briefly reviews the formalism for treating N self-gravitating

collisionless particles statistically. In Section 3, the formalism is applied to

compute ρ(r) analytically as a function of E, the total energy, and ε. The

result is a thermodynamic phase diagram that contains both collapsed and

extended halos. In Section 4, published N -body simulations are located on

the phase diagram and show they are biased exclusively towards the col-

lapsed phase. This phase is unstable for ε = 0, suggesting that collapsed

halos are an artificial by-product of the softened potential; there is no ob-

vious reason to expect agreement between simulated and observed profiles

unless the gravitational potential is appreciably softened in nature.

This work is not intended to reproduce realistic CDM halos with non-zero

angular momentum and hierarchical clustering, but rather to demonstrate in

a code-independent manner how the softening used in N -body simulations

may artificially alter the density profiles found.
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6.2 Statistical mechanics of N self-gravitating par-

ticles

6.2.1 Density of states in the microcanonical ensemble

The properties (e.g. energy, entropy) and collective behaviour (e.g. gravother-

mal catastrophe) of a self-gravitating gas of DM particles in thermodynamic

equilibrium take different values when computed in different statistical en-

sembles because the long-range nature of the gravitational potential renders

the system inseparable from its environment (Padmanabhan 1990; Ispolatov

and Cohen 2001; de Vega and Sánchez 2002). This work follows previous

studies by considering the self-gravitating gas in the microcanonical ensem-

ble (MCE), whose features are constant energy, volume and particle number.

Particles do not evaporate from the system over time and the walls of the

container are perfectly reflecting. The MCE is more appropriate than the

canonical ensemble (CE) for three reasons: (i) it is unclear how to construct

an external heat bath for a long-range potential, required by the CE, because

the system interferes with the environment (Huang 1987); (ii) states with

negative specific heat are inaccessible in the CE (Padmanabhan 1990); and

(iii) the equilibrium density profile in the violently relaxed (Smoluchowski)

limit is the singular isothermal sphere in the CE, contrary to observations

(Sire and Chavanis 2002).

The density of states, g(E), is the volume of the (6N−1)-dimensional

surface of constant energy E in phase space (x1, ...,xN ,p1, ...,pN ), where

(xi,pi) are the co-ordinates and momenta of the i-th particle. At any one

moment, the system sits at one point in the 6N -dimensional phase space.

One has,

g(E) =
1

N !

∫

δ



E −
N
∑

i=1

p2
i

2m
−

N
∑

i6=j

V (xi,xj)



 d3Npd3Nx, (6.1)

where the first and second summations give the kinetic and potential energy,

and the integral is over phase space volume. The gravitational potential,

V , is given by V = −Gm2|xi − xj|−1 for particles of equal mass m, or if

the potential is artificially softened with characteristic length ζ, by V =

−Gm2[(xi − xj)
2 + ζ2]−1/2.
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The thermodynamic entropy (up to a constant) S and the temperature

T of the system are defined in terms of g(E):

S(E) = kB ln g(E), (6.2)

β(E) =
1

kBT
=
∂S(E)

∂E
. (6.3)

These quantities are hard to interpret if assigned to a system far from equi-

librium. Note that g(E) diverges for ζ=0 and N > 2; any two particles

can be brought arbitrarily close together, liberating an infinite amount of

potential energy, so that the co-ordinate space integral diverges (Padman-

abhan 1990). This is a serious problem because it is impossible to achieve

thermodynamic equilibrium if g(E) diverges; the system does not have time

to sample the infinite number of possible microstates with equal probabil-

ity (Chabanol et al. 2000). If the dark matter particles are fermionic, the

Pauli Exclusion Principle prevents this problem. However, the fraction of

the phase space volume sampled by N mildly relativistic CDM particles

in a time t, given by (ct/R)3N (ζc2/2GmN4/3)3N/2, is exceedingly small for

most proposed CDM particles, e.g. ζ2/m ∼ 8×10−(29−26)m2/GeV for self-

interacting dark matter (Spergel and Steinhardt 2000).

6.2.2 Integral equations for ρ(r) in the mean-field limit

The density of states is evaluated in the continuum (mean-field) limit by

integrating over momentum and then expressing the remaining configura-

tions as a functional integral over possible density profiles ρ(x) (de Vega and

Sánchez 2002; Ispolatov and Cohen 2001),

g(E) =

∫

Dρ

∫ +∞

−∞

dγ

2πi

∫ +∞

−∞

dβ

2πi
exp[Ns(ρ, ξ, γ, β)], (6.4)

where the effective dimensionless action

s(ρ, ξ, γ, β) = βξ +
β

2

∫ ∫

ρ(x1)ρ(x2)

|x1 − x2|
d3x1d

3x2 (6.5)

+ γ

∫

ρ(x)d3x − γ − 3

2
lnβ −

∫

ρ(x) ln ρ(x) d3x
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and dimensionless energy

ξ = ER/GM 2 (6.6)

are quantities defined in Ispolatov and Cohen (2001). In (6.4) and (6.5), and

throughout the remainder of this paper, the density profile and co-ordinates

x are written as dimensionless quantities, relative to the total massM = Nm

and outer radius R of the system, with x = x/R and ε = ζ/R.

Upon evaluating the functional integral by a saddle point method (which

involves extremising the action), (6.4) reduces to three coupled integral equa-

tions describing the density profile ρ(x), the central density ρ0 and the in-

verse temperature β = 1/kBT . For a Newtonian potential, one has

ρ(x) = ρ0 exp

[

2πβ

x

∫

1

0

ρ(x1)x1(|x+ x1| − |x− x1|) dx1

]

, (6.7)

1

ρ0

=

∫ 1

0

4πx2

2dx2 exp

[

2πβ

x2

∫ 1

0

ρ(x1)x1(|x2 + x1| − |x2 − x1|) dx1

]

(6.8)

3

2β
= ξ + 4π2

∫ 1

0

∫ 1

0

ρ(x1)ρ(x2)x1x2(|x1 + x2| − |x1 − x2|) dx1dx2. (6.9)

Note the factor 4πx2
2 in (6.8) was omitted due to a typographical error

by Ispolatov and Cohen (2001). The solutions to these equations describe

the density profile, entropy and temperature of an equilibrium system for

a given energy. To obtain analogous equations for the softened potential,

we note (by analogy) that they are of order O(η2ε, ηε2) in the CE, where

η = Gm2N/RT in the CE is a proxy for ξ−1 in the MCE. Note that the

classical thermodynamic limit (N/V constant as N,V → ∞) does not apply

for gravitating systems, but are finite if proportional to N/V 1/3 as N,V →
∞.

6.3 Radial density profile of a CDM halo

Equations (6.7)–(6.9) are solved for the radial density profile ρ(x) by the

following iterative relaxation scheme (Ispolatov and Cohen 2001): given the

current iterate of the profile, ρ(i)(x), apply (6.9), (6.8) and (6.7) to compute

β(i+1), ρ
(i+1)
0 and ρ∗(x) in that order, then apply ρ(i+1)(x) = σρ∗(x) + (1 −

σ)ρ(i)(x) until the convergence criterion
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4π

∫ 1

0
|ρ(i+1)(x) − ρ(i)(x)|x2 dx < δ, (6.10)

is satisfied. Typically, δ = 10−6 and 0.01 ≤ σ ≤ 1 (δ � σ) are adopted in

this work. The softening can be introduced into this scheme in two ways:

(i) as a nonzero lower limit of integration in the integrals in (6.7)–(6.9);

and (ii) in the potential, V = −Gm2[(xi − xj)
2 + ε2]−1/2. Both approaches

were tested and found to produce qualitatively similar behaviour; the latter

is concentrated upon in this work as it is more closely allied to N -body

simulations.

6.3.1 Stable versus unstable phases: ε = 0

With no softening present in the gravitational potential, a stable solution

of (6.7)–(6.9) formally exists above a cutoff energy ξ > ξc ' −0.335. The

density profile of the halo exhibits a flat central core, with dρ/dx → 0 as

x→ 0, and near-isothermal wings, with ρ(x) ∝ x−α (α '2.2) as x→ ∞, as

illustrated in Figure 6.1. This agrees with the solution for secondary infall

onto a spherical perturbation (Bertschinger 1985) and behaves asymptoti-

cally like the spherical, thermally conducting polytrope (Lynden-Bell and

Eggleton 1980) and infinite-dimensional Brownian gas (Sire and Chavanis

2002).

For ξ < ξc, a formal solution of (6.7)–(6.9) does not exist. The entropy

and temperature jump discontinuously below this cutoff energy as shown

in Figure 6.2. This is the well-known gravothermal catastrophe (Antonov

1962). Note that for ξ = −1/4, the singular isothermal sphere ρ(x) =

(4πx2)−1, ρ0 = (4πe2)−1 and β = 2 is always a solution of (6.7)–(6.9), as can

be verified analytically, but it is not stable and so the iterative procedure

never converges to it, but rather to Figure 6.1. Figure 6.2 displays the

entropy and inverse temperature in the stable extended phase.

6.3.2 Collapsed versus extended phases: ε 6= 0

If the gravitational potential is softened, a stable phase exists for all values

of ξ. For ξ > ξ
(+)
c ' 0, the halo is extended as in Figure 6.1 with a flat

core and near-isothermal envelope, ρ(x) ∝ x−2.2. However, for ξ < ξc, the

halo is collapsed. Figure 6.3 displays the density profile of such a collapsed

halo for ε = 10−4 (note that both axes are logarithmic). The halo has a
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Figure 6.1: Equilibrium radial density profile for a system with ξ > ξc and
ε = 0. The profile is similar to a softened isothermal sphere, but with
ρ(x) ∝ x−2.2 as x→ 1.

Figure 6.2: Dimensionless entropy (monotonically increasing) and inverse
temperature (peaked curve) as a function of energy for ξ > ξc when the
gravitational potential is not softened. Below ξc'− 0.335 no stable solution
exists.
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steep Dirac peak (“cusp”) at x = 0: ρ(x) is flat for x . ε, decreases as a

large inverse power of x for x & ε and flattens for x → 1. For intermediate

energies in the range ξc ≤ ξ ≤ ξ
(+)
c , the system is bistable: the halo can

be either extended or collapsed depending on the initial conditions and the

route to equilibrium. Figure 6.4, a plot of entropy and temperature as a

function of energy, illustrates this hysteretic behaviour. S(ξ) and β(ξ) jump

discontinuously at both ξ
(+)
c and ξc. If ξ enters the intermediate range from

below, the halo remains collapsed until ξ exceeds ξ
(+)
c . Alternatively, if ξ

enters from above, the halo remains extended until ξ is reduced below ξc.

The critical energy ξc, and the collapsed and extended profiles obtained,

are consistent with previous analyses (Antonov 1962; Aronson and Hansen

1972; Padmanabhan 1990). For example, Aronson and Hansen (1972) find

a phase transition at ξ ' −0.3, consistent with the value found here ξc '
−0.335, and a critical reciprocal temperature at the transition in the range

βc = 1.2− 1.6 for ε = 10−20, consistent with β ∼ 2 in this paper (ε = 10−4).

A more precise comparison is prohibited by the adoption of the CE rather

than the MCE in most previous work. The van der Waals model proposed

by Padmanabhan (1990) is an exception; it is examined in detail in the

following section. The phenomenon of bistability was overlooked until the

work of Ispolatov and Cohen (2001).

The behaviour of the system depends somewhat on the choice of the re-

laxation parameter σ, defined at the start of this section. Table 6.1 displays

the minimum softening length for which the system makes the transition to

a stable collapsed phase, for a given value of σ. The phase transition from

the extended to the collapsed phase is increasingly delicate for decreasing

softening: for larger values of σ the system is less likely to reach the crit-

ical point where the phase transition occurs and therefore remains in the

extended phase. Although this is a numerical effect, it potentially reflects

the relative likelihoods of the possible routes that the real system can take

to equilibrium.

It is conceivable that for all ε>0 a collapsed stable phase can exist —

although it is highly unlikely in nature — but cannot be probed by this

numerical route. When ε = 0 (pure gravity), the density of states is formally

infinite and a collapsed phase is unlikely to exist. In this work we are merely

interested in showing the artificial behaviour of the system introduced by

macroscopic softenings of the gravitational potential, and not investigating
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Figure 6.3: Radial density profile for the collapsed phase of a potential with
softening ε = 10−4.

σ εmin
0.01 10−14

0.03 10−10

0.05 10−6

0.1 10−2

Table 6.1: Minimum softening, εmin, for which a stable collapsed solution is
found for a given relaxation parameter σ.

the effects of microscopic softenings (e.g. interaction cross-sections).

6.3.3 van der Waals equation of state

An alternative, phenomenological way to model a CDM halo interacting

via a softened gravitational potential is to solve the Lane-Emden equation

for a nonideal, isothermal gas obeying a van der Waals equation of state,

P ∝ ρT (1−ρ/ρm)−1, where P denotes the pressure and ρm is the maximum

density allowed by hard-sphere packing of the CDM particles (Aronson and

Hansen 1972; Padmanabhan 1990). The analogy with a softened gravita-

tional potential implies ρm ∼ mε−3, although it is clear from the outset that

this analogy is inexact; the hard-core, van der Waals potential effectively
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C

E

E

C

Figure 6.4: Dimensionless entropy (thick curve) and inverse temperature
(thin) versus energy. The collapsed and extended phases are labelled C and
E respectively. Both quantities display discontinuous jumps at the phase

transitions at ξc ' −0.335 and ξ
(+)
c ' 0.0. If the energy is increased from

below ξc, the system remains in the collapsed phase until ξ = ξ
(+)
c , when

it jumps to the extended phase. If the energy is reduced from above ξ
(+)
c ,

the system remains in the extended phase until ξ = ξc when it jumps to the
collapsed phase.

excludes a volume ∼ ε3 around each particle, whereas softened gravity sup-

presses the mutual acceleration of particles separated by a distance ε with-

out preventing them from ‘coasting’ even closer together. The solutions of

(6.7)–(6.9) are compared with the van der Waals model by integrating the

nonideal Lane-Emden equation

1

r2
d

dr

[

r2

ρ

d

dr

(

ρT

1 − ρ/ρm

)]

= −4πGρ (6.11)

from r = R1 to r = R, obtaining

1

ρ(R)

dρ

dr

∣

∣

∣

∣

R

− R2
1

R2ρ(R1)[1 − ρ(R1)/ρm]2
dρ

dr

∣

∣

∣

∣

R1

= −βM1/M , (6.12)
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where M1 denotes the mass enclosed in the volume R1 ≤ r ≤ R. [ρ(R) � ρm

is used to simplify (6.12).] The quantities ρ(R), ρ(R1), their derivatives,

M1, and β can be extracted from our numerically computed profiles, which

satisfy (6.7)–(6.9), in order to find ρm as a function of ξ and ε and hence

compare with the results of Aronson and Hansen (1972) and Padmanabhan

(1990). The inner integration limit R1 must be positioned carefully near the

inflection point of the central Dirac peak, e.g. at r = 10−3.8 in Figure 6.3,

in order to avoid the innermost grid cells, where the numerical solution is

noisiest, while ensuring that ρ(R1)/ρm is not too small, to avoid roundoff

error when solving (6.12) for ρm.

In Figure 6.5, the density of states is compared with the van der Waals

models by plotting 1/β versus ξ for both models in the MCE. The open

triangles indicate solutions of (6.11) for 10−4 ≤ a = M/4πρmR
3 ≤ 10−2.

The boxes and asterisks indicate solutions of (6.7)–(6.9) for ε = 10−4 and

10−3 respectively, with a tolerance of δ = 10−8. (it has been verified that

the results are unchanged for 10−6 ≤ δ ≤ 10−8.) Applying the procedure in

the previous paragraph to compute ρm, log a = −10.1 and −9.00 is found

for the boxes and asterisks respectively. For ξ > ξc, the two models are in

accord, as expected; the halo is extended, so the softening (and the precise

value of a) are not important in the dilute regime ρ � ρm. For ξ < ξc,

the two models differ appreciably. The density of states calculation predicts

less variation of T with E than the van der Waals model, for a given value

of a. The trend is confirmed, apparent in Figure 4.11 of Padmanabhan

(1990), that T increases with |a| when ξ < ξc is fixed. However, the trend is

confirmed in the range −10 . log a . −9, which does not overlap with the

range −4 ≤ log a ≤ −2 investigated by Padmanabhan (1990). The effective

value of ρm predicted by the density of states calculation is systematically

greater than anticipated in van der Waals models published previously.

6.3.4 Phase diagram on ξ − ε plane

A phase diagram for the system can be produced by plotting the power-law

exponent of the density profile as a function of ξ and ε. The logarithmic

slope of the density profile is defined as

p(x) =
d ln[ρ(x)]

d lnx
. (6.13)
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Figure 6.5: Temperature T as a function of total mechanical energy E for a
range of softening lengths ε. The open squares and asterisks denote CDM
halos with ε = 10−4 and 10−3 respectively, modelled by the density of states
formalism (6.7)–(6.9). These halos correspond to log a = −10.1 and −9.00
in the van der Waals formalism. The open triangles denote CDM halos with
−4 ≤ log a ≤ −2, modelled by the van der Waals formalism (Padmanabhan
1990). For any given E in the plotted range, T is the same for all values
−4 ≤ log a ≤ −2; moreover, these a values are systematically greater than
the predictions of the density of states formalism.

The logarithmic slope is evaluated in the inner halo at x = ε, and also at the

box edge, x = 1, to consistently characterise the two phases. Figures 6.6 and

6.7 display these phase diagrams for σ=0.01 (note that varying the value of

σ does not affect the results noticeably). The phase transition occurs where

the contours are bunched at ξ ' −0.335. For ε . 10−2, p(ε) is large (Dirac

cusp) and p(1) is almost zero (flat envelope) in the collapsed phase. For

ε & 10−2, the system does not undergo a phase transition. The entropy and

temperature are continuous for all ξ and the profile is extended.

Interestingly, the central Dirac peak steepens as ε decreases, in the col-

lapsed phase. Figure 6.8 plots p(x) as a function of logarithmic radius for

10−5 ≤ ε ≤ 10−2 and at a fixed energy ξ = −0.5. The location and am-

plitude of the maximum of p(x) is a strong function of ε, with p(x) → 0
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Figure 6.6: Contour plot of the logarithmic slope , |p|, of the density profile
in its inner, x = ε, region, as a function of energy, ξ. The phase transition is
clear at ξ ∼ −0.335 for ε . 10−2. The slope, |p(ε)| steepens as ε is reduced.
For ε & 10−2 the system no longer collapses. The outer profile is flat in the
collapsed regime.

as x → 0, 1 for collapsed halos. The classical NFW profile (Navarro et al.

1996) and the profile of the extended phase at ξ > ξc are also plotted for

comparison. Clearly the NFW profile does not resemble either the collapsed

or extended phase profiles. We are unable to explain unambiguously why

the NFW profile is not reproduced, but remind the reader that our analy-

sis neglects several effects, such as hierarchical clustering, non-zero angular

momentum, and cosmological expansion, which are present in full N -body

simulations. Hence, there is no reason to expect agreement since we are

highlighting potential flaws, although necessary, in the design of the simu-

lations, and not comparing the subsequent output.

The dynamic range of numerical studies generally extends from a few

times ε to the virial radius. In this range, from Figure 6.8, p(x) is strongly

affected by the softening length used.
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Figure 6.7: Contour plot of the logarithmic slope , |p|, of the density profile
in its outer, x = 1 (b), region, as a function of energy, ξ. The phase transition
is clear at ξ ∼ −0.335 for ε . 10−2. The slope, |p(ε)| steepens as ε is reduced.
For ε & 10−2 the system no longer collapses. The outer profile is flat in the
collapsed regime.

6.3.5 Cosmological expansion

The calculations are performed in a static background spacetime. In the cen-

tral parts of the halo, where most of the attention is focussed, CDM particles

are tightly bound and effectively decoupled from the cosmological expansion.

Consequently, the phase transition at ξc is essentially unaffected, as long as

the central volume where the cosmological expansion can be neglected is still

large enough to encompass the ‘core-halo’ structure (centre-to-edge density

contrast & 709) required for the gravothermal catastrophe to occur (Lynden-

Bell and Wood 1968). From this perspective, a static background metric is

a good approximation.

In the outer halo, CDM particles are loosely bound and ρ(x) may be

determined partly by the expansion and certain specific cosmological pa-

rameters. For example, there exists a mapping between the linear and

evolved two-point correlation functions of halos which implies power-law

density profiles with exponent −3(n + 4)/(n + 5), where n is the index of

the power spectrum of initial fluctuations (Hamilton et al. 1991; Padman-
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Figure 6.8: Logarithmic slope, p as a function of logarithmic radius for
ξ = −0.5 and ε = 10−5 (long dash), 10−4 (dash-dot-dot-dot), 10−3 (dash-
dot) and 10−2 (dotted). The slope is a maximum of x slightly above ε. Also
plotted is an NFW profile (solid) and an extended phase profile (short dash,
ξ = −0.3).

abhan and Engineer 1998). By the same token, simulations suggest that

the dependence of the shape of the profile on initial cosmological param-

eters is weak; this empirical result holds for SCDM (ΩM = 1.0), LCDM

(ΩM = 0.3,ΩΛ = 0.7) and open (ΩM = 0.3) cosmogonies, as well as a wide

mixture of hot and cold dark matter components (Huss et al. 1999b). Note

that the origin of the NFW scale radius observed in simulated halos, rs,

is not explained by the (self-similar) Padmanabhan and Engineer (1998)

mapping. However, the total power spectrum, P (k), is proportional to the

product of the Fourier transformed halo profile and the power spectrum

of the distribution of halo centres, Pcent(k) (Padmanabhan 2002), imply-

ing ρ(x) ∝ x−1 at large k [deep minima of the gravitational potential, V ,

with Pcent(k) ∝ PV (k)], and ρ(x) ∝ x−3 at small k [quasi-linear regime,

Pcent(k) ∝ P (k)] (Padmanabhan 2002).

Huss et al. (1999a) demonstrated empirically that cosmological expan-

sion does influence ρ(x), but that it is one of several relevant factors. They

simulated a halo with all tangential components of the gravitational force
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artificially set to zero, reproducing the spherical infall solution with a power-

law exponent of ∼ −2.2 and no break in slope (Bertschinger 1985). They

also showed that rs is not determined solely by expansion, found evidence

for the importance of angular momentum in the system, and concluded that

the unbroken power-law profiles of van Albada (1982) in the absence of ex-

pansion were inadequately resolved for the purpose of testing the existence

of rs. Of course, the scale radius (and hence the concentration parameter)

of a halo does depend critically on its formation epoch: rs is fixed by the

overdensity, δc, which is, in turn, a function of the collapse redshift (Navarro

et al. 1997).

6.4 Comparison with the design of numerical sim-

ulations of CDM halos

The key result from Section 6.3 from the perspective of N -body simulations

is that any simulation with ε 6= 0 can produce stable halos for energies ξ < ξc

that do not support stable halos in true (ε = 0) gravity. Furthermore, these

stable ε 6= 0 halos are collapsed, whereas stable ε = 0 halos are extended. In

this section it is shown that many published N -body results inadvertently

sample the collapsed regime only. We confine this work to studies that

report the specific values of ξ and ε explored.

6.4.1 Softening length

Simulations have been performed over a range of N and with a range of

resolutions in an attempt to place bounds on the optimum softening length

(Ghigna et al. 2000; Splinter et al. 1998; Moore et al. 1998). van Kampen

(2000) argued that the choice ε ≈ 0.5r1/2N
−1/3, where r1/2 is the half-

mass radius of the system, strikes a balance between too short a relaxation

time (ε too small) and excessive particle clustering (ε too large). Similarly,

Athanassoula et al. (2000) find an optimal length ε = 0.32N−0.27 for a γ = 0

Dehnen sphere. These different criteria define a range of ε within which most

modern simulations are performed. The softening length in high resolution

simulations is 1–5kpc for galaxy-sized halos (Reed et al. 2003), corresponding

to ε ∼ 10−4 if R is taken to be the virial radius. The studies investigated

below occupy the range 10−4 < ε < 10−2.
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6.4.2 Total energy of a halo

The total energy of a simulated halo is rarely quoted in published studies.

We therefore calculate ξ from the quoted mass, size and concentration pa-

rameter, c = rs/r200, where rs is the characteristic radius of the halo and

r200 = R is the radius at which the halo density has dropped to 200 times

the background. For a classical NFW halo, the kinetic energy, K, is given

by (Mo et al. 1998),

KNFW =
GM2

2R
f(cNFW ), (6.14)

f(cNFW ) =
c

2

1 − 1/(1 + c)2 − 2 ln(1 + c)/(1 + c)

[c/(1 + c) − ln (1 + c)]2
, (6.15)

assuming circular orbits. The potential energy is (Binney and Tremaine

1987,Eqn 2P-1)

UNFW = −G
2
h(c), (6.16)

h(c) =

∫ 1

0
x−2[(1 + cx)−1 − 1 + ln (1 + cx)]2 dx, (6.17)

assuming spherical symmetry.

Similarly, the energy of the halo profile found by Moore et al. (1999b)

can be calculated, and is found to be,

KM =
GM2

4R

[

1 +
f(cM )

ln2 (1 + c3/2)

]

, (6.18)

f(cM ) =

∫ 1

0

ln2 (1 + c
3/2
M x3/2)

x2
dx, (6.19)

UM = −GM
2

2R

f(cM )

ln2 (1 + c3/2)
(6.20)

Due to the assumptions inherent in the calculation of both K and U ,

the total energy, E, is calculated in three ways: E (a) = −K, E(b) = U/2

and E(c) = K + U . The first two methods utilise the virial theorem. The

dimensionless energy, ξ, is calculated using ξ = ER/GM 2. Of the assump-

tions made, that of circular orbits is the most questionable. ξ (b) is therefore

taken to be the most reliable measure of the energy, as the assumption of
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Study M (1012M�) r200 (kpc) c ξ(a) ξ(b) ξ(c) ε Comment Reference
NFW 2.9 172 17.54 -0.76 -0.52 -0.28 0.01 1

22.7 733 15.38 -0.73 -0.48 -0.23 0.01 1
Huss 500 1360 6.3 -0.55 -0.29 -0.03 0.0037 CDM run 2

Moore 430 1950 4 -0.57 -0.32 -0.07 0.0005 cluster 3
Reed 0.188 119 28 -0.93 -0.68 -0.43 0.0020 dwf1 4

40 705 12.5 -0.68 -0.43 -0.18 0.0009 grp1 4

Hayashi 2.2 212.7 5.3 -0.52 -0.27 -0.02 0.0021 G3/2563 5

Table 6.2: Recent N -body simulations of CDM halos. The mass M , size
r200, concentration parameter, c, and softening length, ε, are measured from
the output. Equations (6.14)–(6.20) are used to calculate the halo energy
in three ways, ξ(a), ξ(b) and ξ(c). All calculations assume an NFW profile,
except for Moore et al. (1999b) which uses the Moore profile. (1) Navarro
et al. (1996); (2) Huss et al. (1999a); (3) Moore et al. (1999b); (4) Reed
et al. (2003); (5) Hayashi et al. (2003)

spherical symmetry is not unreasonable.

6.4.3 Position on the phase diagram

Using these expressions, one can take recent N -body studies in order to

determine where simulations lie on the phase diagram. This can be per-

formed for a range of halo masses: from dwarf galaxy (∼ 1010M�) to cluster

size (∼ 1014M�). Results have been chosen from several recent and sem-

inal works that have performed N -body simulations of dark matter halos

in a ΛCDM cosmogony. From the output parameters including c, ξ and ε

(normalised by r200) are calculated. Table 6.2 summarises the critical in-

formation. In the final column, comments are made identifying the specific

halos chosen from the studies. The three methods for calculating the energy

produce very different results.

In Figure 6.9, the most reliable energies, ξ(b), and softening values for

these studies are placed over the phase diagram of Figure 6.6(a). Studies lie

either exclusively in the collapsed phase regime, or in the bistable region,

where stable solutions exist for both collapsed and extended phases.

The two energy calculation methods produce different constraints on the

range of concentration parameters producing halos lying in either the col-

lapsed or extended phases. Any NFW profile with the energy calculated

via K must lie in the collapsed regime. Energies calculated via U , however,

can exist in the extended phase if cNFW.8, which correspond to more mas-

sive halos. Similarly, the Moore calculation shows empirically ξ
(a)
M < −3/8

for all c > 0 and is therefore in the collapsed regime exclusively. When
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5.0

7.5

10.0

12.5

Figure 6.9: Energy, ξ(b), and ε of published N -body CDM halos overlaid on
a contour plot of p(ε), as summarised in Table 6.2. The asterisks, plus signs,
triangle, box and diamond denote the results of Navarro et al. (1996), Reed
et al. (2003), Hayashi et al. (2003), Moore et al. (1999b) and Huss et al.
(1999a) respectively.

calculated using the potential energy, cM.4 for the possibility of extended

halos. Hence, if calculated via the kinetic energy, both profiles always have

ξ(a) < ξc and lie in the collapsed regime exclusively. Calculated the alter-

native way, small concentration parameters allow the halos to be in either

phase (bistable energy region) depending on the calculation history.

Without the assumption of virialisation, the energies calculated via E =

K+U are, in general, less negative. However, similar to the other methods,

all energies, ξ(c), lie in either the collapsed or the bistable regions. Many

studies lie in the collapsed regime exclusively.

6.5 Conclusions

The equilibrium configurations of N self-gravitating collisionless particles,

interacting via a softened gravitational potential, in the MCE and mean-

field limit have been investigated. Below a critical energy, ξc ' −0.335,

a system with ε 6= 0 exists in a stable, collapsed phase. This phase is
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unstable for pure gravity (ε = 0). Above another critical energy ξ
(+)
c ' 0,

both softened and unsoftened systems exist in an stable, extended phase.

In the intermediate region ξc < ξ < ξ
(+)
c , both the collapsed and extended

phases are accessible; the detailed route to equilibrium determines which

one is picked out. The density profiles for the extended and collapsed phases

are qualitatively different. The extended profile has a flat core and near-

isothermal outer envelope. The collapsed profile is a centrally condensed

Dirac peak, whose logarithmic slope depends on ε.

The results are compared with the construction of published N -body

simulations by using the softening parameter, ε, size, r200, and concentration

parameter, c, to place simulated halos on the ξ-ε phase diagram. It is

found that many published simulations inadvertently sample the collapsed

phase only, even though this phase is unstable for pure gravity and arguably

irrelevant astrophysically.

The reader is reminded that several effects are neglected that are im-

portant in real CDM halos, such as hierarchical clustering, nonzero angular

momentum, and cosmological expansion. In addition, real halos are not

fully relaxed. The results elucidate some of the artificial behaviour that a

softened potential can introduce; they are not a substitute for a full N -body

calculation. We do not intend to compare profiles with those produced by

simulations, but merely highlight that the design of simulations, although

necessary, may be flawed.
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CHAPTER 7

Summary and Conclusions

Dark matter is an enigmatic substance that comprises 85–90 per cent of the

mass of universe. Despite its importance for understanding the formation of

structure, it is undetected and poorly understood. This thesis aimed to shed

light on the structure of dark matter in galaxies, where it can be studied via

its gravitational influence on baryons and photons.
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7.1 Mass distribution of 2237+0305

The gravitational lensing galaxy 2237+0305 is an excellent laboratory for

studying the structure of its dark matter halo since there is a range of

complementary, high-quality data available describing its major mass com-

ponents. In this work, a combination of lensing, photometric and kinematic

data was used to constrain the mass distribution in the major mass com-

ponents of 2237+0305 — the bulge, disk, dark matter halo and bar. Given

that it is a complicated late-type galaxy, further kinematic information was

required in the lensed image region to break the remaining degeneracies

between models for the dark matter halo.

High resolution Keck echelle data were used to measure the inner rotation

curve and velocity dispersion profile along the galactic major and minor axes.

The Nad absorption line was used as the kinematic tracer since it does not

appear to be contaminated by other spectral features. Neither the Mgb or

FeI lines produced consistent results, most likely due to contamination from

the quasar and other galactic absorption features in their echelle order. No

emission lines were observed in the galaxy spectrum.

Addition of this information provided a much improved model for the

galaxy, with early results suggesting a softened spherical density distribu-

tion similar to that found by Bertschinger (1985) for secondary infall onto

a spherical perturbation is preferred for the dark matter halo. All solutions

favoured models with submaximal disks (vdisk/vtotal ∼ 50%). No statisti-

cally acceptable solutions were found due to the simple kinematic model

used for the bulge and dark matter components, however the best-fitting

solutions were found to have reduced χ2 ∼ 2–5. The inclusion of bar orbits

and a more robust estimate of the contribution of the dark matter to the

kinematics would tighten the result.

The confirmation of a softened density profile for the dark matter halo

with further modelling will add to observational evidence suggesting the

results from N -body simulations are not reproducing the true structure of

halos (de Blok et al. 2001b). Either the baryons play an important role in

the softening of the centres of dark matter halos, there is a problem with the

simulations (Trott and Melatos 2005), or a problem with the observations

(Swaters et al. 2003). The addition of kinematic data in this galaxy removes

some of the necessary dependence on parametric models because the slope
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is constrained over a radius range greater than that probed by the point

images of the quasar, and more parameters can be modelled with the extra

degrees of freedom. The galaxy 2237+0305 remains the best modelled galaxy

displaying quasar lensing.

7.2 Detecting substructure in the Galaxy

The dark matter distribution within our own Galaxy can be probed by

observation of its gravitational effect on baryonic structures. The interaction

of dark matter subhalos with disk stars as the subhalo passes through the

Galactic disk was modelled, to search for and quantify observable stellar

phase-space signatures.

The subhalos were modelled with mass, size and density distributions

consistent with those from semi-analytic models of substructures within

Milky Way-like galaxies. Simulations were performed of the gravitational

influence of a subhalo passing through the disk of our Galaxy on the phase-

space positions of disk stars. The next generation satellite GAIA and its

predicted uncertainties in measured parameters was used to determine if it

could detect the signatures of subhalos in phase space. Estimates from the

literature were also obtained for the magnitude of other phase space effects

in the disk that could mimic a subhalo passage, such as heating of stars by

molecular clouds and stellar clumping due to spiral arms and star formation

regions.

In both the spatial and velocity domains, only very massive subhalos (M

& 109M�) were found to be detectable given the poor distance determina-

tions for stars beyond a few kiloparsecs from the sun and due to the lack

of observable stars at large distance. The predictions for the mass function

of dark matter substructure require the threshold mass to be lower than

∼2×108M� for there to be at least one subhalo in the disk at all times.

GAIA will not therefore have sufficient resolution in key parameters (such

as distance determination), or adequate sensitivity, to detect the passage

of a dark matter subhalo through the disk unless a massive (M & 109M�)

subhalo lies fortuitously in the disk now (P . 10%).
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7.3 Properties of collisionless N-body systems in

softened potentials

The structure of a self-gravitating system of collisionless particles was in-

vestigated using a statistical mechanical framework to compare results with

those found by N -body simulations of collisionless dark matter particles. In

particular, the effect of softening the gravitational potential at short dis-

tance, ε, on the density distribution in the system was investigated. As

found in previous work, the system is able to exist in a stable phase at lower

energies (ξc < −0.335) in a softened system than in a system with pure 1/r

gravity. The introduction of a softening parameter allows a phase transition

to a low temperature stable phase where most of the particles reside in the

system’s centre. Without the softening, the system is unstable at these low

energies and no solution can be found. For ξ > ξc the pure gravity solution

(ε = 0) exhibits a density profile that has a flat core (ρ ∼ r0) and outer

logarithmic slope consistent with earlier results for secondary infall onto a

spherical perturbation (ρ ∼ r−2.2, Bertschinger 1985).

The energies of halos fromN -body simulations performed by other groups

and presented in the literature were compared with the energy ranges for the

stable and unstable phases, and found that many simulations may be prob-

ing an energy regime only physically allowable because a softening is used

in their computation. The lack of published values for the final energies of

these simulations required their calculation to be performed using different

standard methods and other known parameters (e.g. system size and mass).

Further work will calculate the energy of these simulated halos directly by

summing over individual particle energies and comparing the results with

the theory presented here. If the introduction of a softening length does

allow the N -body systems to enter an unphysical phase, simulations are

producing density profiles that do not represent nature, and may prove to

be the resolution of the cusp-core controversy.

The results were performed in a box with a static background and no

angular momentum. A calculation that could be compared directly with the

results from N -body simulations would need to include both cosmological

expansion and angular momentum as these affect the shape of the final

density profile (Huss et al. 1999a).

Future work could employ the framework of de Vega and Siebert (2002)
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who construct, using a similar argument to that presented here, the equilib-

rium density profiles for two collisionless particle populations with different

mass. Although their relative masses are 50–60 orders of magnitude apart,

the equilibrium configuration of dark matter particles residing with stars

would be an interesting calculation.

7.4 Conclusions

The eventual discovery and understanding of the properties, distribution and

formation of dark matter remains one of astrophysics’ holy grails. With the

amount of effort being placed in determining its distribution in the universe,

and the more recent effort to detect it directly (e.g. the DAMA experiment,

Belli et al. 1999) and indirectly (self-annihilation radiation from the Galactic

centre, e.g. Boehm et al. 2004), this feat should be achieved in the decades

to come.

Galaxies are the best understood systems that contain dark matter con-

centrations, and the bulk of future work should be concentrated on them.

Lens systems, such as 2237+0305, offer the best hope in this regard due to

the larger amount information available about them. Among lens systems,

such good laboratories are rare however, since most systems are early-type

galaxies at significant redshift. There are a handful of other excellent can-

didate lenses for a similar study (e.g. B1600+434, a z= 0.41 late-type lens),

but most suffer from confusion, such as from nearby perturbers. We are

still discovering new lenses with new properties not yet observed in known

systems (e.g. wide angle lenses with image separations >10 arcsec, SDSS

J1004+4112, Inada and Oguri 2004), and the larger number, the greater

diversity and the continual improvement of techniques to study them, will

build-up a more comprehensive picture of the distribution of dark matter

in galaxies than one can obtain from a single nearby system. In addition,

the work on systems with extended images is reaching a point where it can

make a huge contribution to our understanding, due to the greater amount

of information available. Until recently, the complex algorithms required to

adequately model these systems has not been available.

The resolution of the ‘cusp-core’ controversy will most likely lie in the

full use of baryonic physics in simulations of galaxy formation. Many of

the assumptions used in the calculations producing the angular momentum
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problem (e.g. that the angular momentum distributions of the dark matter

and the baryons are the same) will likely be shown to be flawed through a

proper simulation, and the ‘cusp-core’ controversy may also be borne out in

this manner. The recent work of Hayashi et al. (2004a) comparing galaxy

kinematics directly with the output of simulations is also a step in the right

direction. One also must be careful to not compare the shape of dark matter

halos in regions that do not converge in the simulations.

Nonetheless, observationalists have been very careful to use high quality

data when making assertions about the shape of the dark matter halo, and

the results of Chapter 6 should serve as a general warning about the appli-

cability of the simulations altogether. Greater transparency in the design

and output of N -body simulations (e.g. kinetic and potential energies of

the halo) would help the rest of the community to better appreciate and un-

derstand them, and remove some of the mystique between the observational

and simulation communities, thereby furthering the field and contributing

to our understanding of the universe in which we live.
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M. López-Corredoira, A. Cabrera-Lavers, O. E. Gerhard, and F. Garzón.

Evidence for a deficit of young and old stars in the Milky Way inner

in-plane disc. Astron. & Astrophys., 421:953–967, July 2004.

C. G. Lacey. The influence of massive gas clouds on stellar velocity disper-

sions in galactic discs. MNRAS, 208:687–707, June 1984.

J. Lehar, G. I. Langston, A. Silber, C. R. Lawrence, and B. F. Burke. A

gravitationally-lensed ring in MG 1549 + 3047. AJ, 105:847–852, March

1993.

G. F. Lewis, M. J. Irwin, P. C. Hewett, and C. B. Foltz. Microlensing-

induced spectral variability in Q 2237+0305. MNRAS, 295:573–+, April

1998.

G. B. Lima Neto, D. Gerbal, and I. Márquez. The specific entropy of ellip-

tical galaxies: an explanation for profile-shape distance indicators? MN-

RAS, 309:481–495, October 1999.

L. Lindegren and M. A. C. Perryman. GAIA: Global astrometric interfer-

ometer for astrophysics. Astron. & Astrophys. Suppl. Ser., 116:579–595,

May 1996.

E. L. Lokas, G. A. Mamon, and F. Prada. Dark matter distribution in the

Draco dwarf from velocity moments. astro-ph/0411694, 2004.

D. Lynden-Bell and P. P. Eggleton. On the consequences of the gravothermal

catastrophe. MNRAS, 191:483–498, may 1980.

D. Lynden-Bell and R. Wood. The gravo-thermal catastrophe in isothermal

spheres and the onset of red-giant structure for stellar systems. MNRAS,

138:495–+, 1968.

S. R. Majewski, M. F. Skrutskie, M. D. Weinberg, and J. C. Ostheimer.

A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I.

Morphology of the Sagittarius Core and Tidal Arms. ApJ, 599:1082–1115,

December 2003.



BIBLIOGRAPHY 179

A. H. Maller, L. Simard, P. Guhathakurta, J. Hjorth, A. O. Jaunsen, R. A.

Flores, and J. R. Primack. Breaking the Disk/Halo Degeneracy with

Gravitational Lensing. ApJ, 533:194–202, April 2000.

R. A. Mendez and R. Guzman. Starcounts in the flanking fields of the

Hubble Deep Field. The faint end of the disc stellar luminosity function

and its scale-height. Astron. & Astrophys., 333:106–116, May 1998.

J. Miralda-Escude. The correlation function of galaxy ellipticities produced

by gravitational lensing. ApJ, 380:1–8, October 1991.

H. J. Mo, S. Mao, and S. D. M. White. The formation of galactic discs.

MNRAS, 295:319–336, apr 1998.

B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and

P. Tozzi. Dark Matter Substructure within Galactic Halos. ApJL, 524:

L19–L22, oct 1999a.

B. Moore, F. Governato, T. Quinn, J. Stadel, and G. Lake. Resolving the

Structure of Cold Dark Matter Halos. ApJL, 499:L5+, may 1998.

B. Moore, T. Quinn, F. Governato, J. Stadel, and G. Lake. Cold collapse

and the core catastrophe. MNRAS, 310:1147–1152, dec 1999b.
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APPENDIX A

Gauss-Hermite Pixel Fitting

The Gauss-Hermite Pixel Fitting software is introduced and the mathemat-

ical framework underpinning it presented. The procedures for preparing

the stellar templates and galaxy spectra are discussed and the parameters

chosen in the fitting are explained and justified.
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A.1 Gauss-Hermite Pixel Fitting Software

To compare the absorption lines in the galaxy spectra with appropriately

broadened and shifted lines in the stellar template spectra, careful and accu-

rate characterisation of the line profiles and reliable continuum subtraction

are required, with this aim in mind. The mathematical approach taken by

van der Marel (1994) and implemented in his Gauss-Hermite Pixel Fitting

Software will be summarised.

A model for the galaxy spectrum is constructed as a sum of the broad-

ened and shifted stellar template, and a continuum background. The con-

tinuum is characterised by Legendre polynomials, and the velocity profiles

of the absorption lines by a Gauss-Hermite series (of which the Gaussian is

the first order solution). These choices of functional forms characterise the

galaxy spectra with sufficient accuracy. A χ2 statistic is used to quantify

the difference between the model and observed galaxy spectra, as a function

of the number of free parameters such as the velocity dispersion and velocity

offset.

IfG(x) and S(x) are the galaxy and stellar template spectra, respectively,

as a function of logarithmic wavelength (x = lnλ), a model galaxy spectrum

can be written as,

Gmodel(x) = a

{

[B ◦ Sγ ](x) +

L
∑

l=1

blPl(x)

}

, (A.1)

where ◦ denotes a convolution, Pl(x) are Legendre polynomials, and γ is

called the ‘line strength’,

Sγ(x) ≡ γS(x) + (1 − γ), (A.2)

and allows for different equivalent widths of the galaxy and stellar spectra.

The form of B, the broadening function that includes the Gauss-Hermite

series, will now be described. The velocity profile is expanded as a Gauss-

Hermite series, where the first order solution is a Gaussian profile, and higher

order terms introduce non-Gaussianity, such as flattening or steepening of

the line peak. This expansion can be expressed as,
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B(x) = B(v/c) =
c

σ
α(w)



1 +

N
∑

j=3

hjHj(w)



 , (A.3)

where

w ≡ (v − V )/σ, (A.4)

α(w) =
1√
2π

exp (−w2/2), (A.5)

contain the velocity shift, V , and the velocity dispersion, σ. Here, α(w) is a

Gaussian and Hj(w) are the Hermite polynomials. The software minimises

over these parameters for the coefficients h3–h6 (N = 6), and for v and σ.

A.2 Software Functions

There are several additional steps that need to be undertaken to compare the

galaxy with stellar template spectra. Firstly, the template spectra need to

be smeared and chopped to have the same resolution (Å/pixel, observations

were made with differing slit widths as shown in Table 3.1) and size as

the galaxy spectra. The procedure preptemp then broadens the template

spectra to a user-specified range of velocity dispersions, producing a two

dimensional file.

The galaxy spectra are prepared with the procedure prepgal, which

has a number of roles. The spatial scale of the spectrum is assigned (row

number corresponding to galactic radius) and the user is prompted for the

range of radii (rows) to be used in the fitting. Similarly, the procedure

rebins the spectrum spatially to meet a user-defined signal-to-noise ratio, or

bin width. A mask file is constructed containing the wavelength range to

be used in fitting, and the location of any bad pixels. The sky spectrum is

averaged and placed in the first row of the galaxy spectrum to remove any

strong sky lines that were incompletely subtracted during the initial data

reduction. The procedure prompts for a 2D noise spectrum, so as the noise

can be evaluated independently at each pixel (these noise values are used in

the final χ2 calculation). The noise map is calculated as the variance,
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v =

(

2
∑

i=1

|fi|2 + |si|2 + rn

)1/2

(A.6)

where fi and si are the flux and sky maps for each image (as discussed above,

two observations were taken for each of the major and minor axes), and rn

denotes the readnoise. In these observations, rn = 2.3 e−/pixel, however the

Poisson noise of the signal and sky maps far exceed this value.

The final fitting procedure, pixfitgau, takes the output of the two

preparatory programs and iteratively performs the χ2 minimisation over

parameters. The user specifies the maximum order of Legendre polynomials

for continuum fitting, and the procedure outputs the best-fitting velocity

offset and velocity dispersion, with their uncertainties, at each radial bin,

and the χ2. This procedure fits only Gaussian profiles to the absorption

lines. Gauss-Hermite expansion can be used subsequently for more accurate

results, if required. The Gauss-Hermite series will not be used because line

shapes are not required, and a basic kinematic analysis is desired.

Hence, there are a number of user specified parameters that can be varied

to find the best solution — the wavelength range, Legendre polynomial

order, choice of stellar template, signal-to-noise or size of radial bins.

A.3 Spectral Templates

The stellar templates comprise eight stellar types, ranging from G0III to

K5III — red giant stars that contribute the majority of the light in early-

type galactic components. A small slit width (0.3′′) was used for the stellar

observations to maximise spectral resolution so that they could be used for

many different slit widths.

For these spectra to be compared correctly with the galactic spectra,

they need to be Gaussian smeared to the galactic spectra resolution. The

quoted resolution of the ESI instrument in Echelle mode is σ = 11.89kms−1

(slit width = 0.3′′) and 36.1kms−1 (∆x = 1.25′′). The IRAF task gauss is

used to smear the stellar template to the correct resolution by convolving the

spectra with a Gaussian distribution. Since the convolution of two Gaussian

distributions with variances σ2
1 and σ2

2 gives σ2 = σ2
1+σ2

2 , the template needs

to be smeared by (36.12 − 11.892)1/2 = 34.09kms−1, which corresponds to

34.09kms−1/11.4kms−1pixel−1 = 2.9 pixels. After smearing, the templates
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were redshifted to coincide with the previously measured recessional velocity

of the galaxy. This ensures the correct shift of each wavelength, although

is not critical for a low redshift system such as 2237+0305 (z=0.039 used).

The spectra were then truncated to contain the same number of pixels and

wavelength range as the galactic spectra. Templates were prepared to com-

pare with Orders 5 and 6, which include the absorption features Mgb, FeI

and Nad — of interest for my analysis.

The templates for Orders 5 and 6 are now ready to be prepared by

preptemp. Both orders were prepared such that the velocity dispersions

will be trialed over the range σ = 40 − 900kms−1 with ∆σ = 5kms−1. This

is an arbitrarily large range as the measurements of Foltz et al. (1992)

found a central dispersion of σ = 215 ± 30kms−1, however it is useful to

ensure the software is working correctly. The resolution, ∆σ = 5kms−1,

was chosen to be accurate enough for the expected uncertainties in the

dispersion (∼10s kms−1). Figure A.1 shows a surface representation of an

output two dimensional stellar template. As the broadening dispersion is

increased from 40kms−1 to 900 kms−1, the spectral features are smoothed

out, and the spectrum becomes mostly featureless. The velocity dispersion

of the galaxy lies somewhere in this range.

A.4 Preparation of the Galaxy Spectrum

The galaxy spectra are prepared similarly. The central rows (22–100) are

chosen to be fitted (outer rows show no signal) corresponding to r = [−6.7, 6.1] ′′

where the central row (68) is estimated using the peak in the spectra. In-

creasing the radial range is found to have little effect on the results, since

the signal-to-noise ratio reduces beyond r∼3′′.

The two orders contain incompletely subtracted sky lines which need

to be taken into account in the fitting. In my case, the best approach for

this is to restrict the wavelength range of the fitting routine to include the

absorption features, but exclude the bad pixels. Conversely, choosing too

narrow a range can lead to larger errors in the results (it is important there

is enough information for the continuum to be properly characterised). For

both orders, a median range has been chosen and is shown in Figure A.2.

The ranges encompass the main absorption features and the surrounding

continua.
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Figure A.1: Surface representation of the smeared, two dimensional stellar
template spectrum. As the Gaussian Broadening dispersion is increased
(y-axis), the spectral features are smoothed out.

Finally, the radial rows were rebinned to meet a minimum signal-to-noise

ratio of 5. This figure is varied later for comparison, but the dynamical

results are found to be robust to its variance.
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Figure A.2: Wavelength range chosen for each order for velocity dispersion
fitting. The choice allows for the range around the absorption features, but
omits regions with inaccurate sky subtraction.
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APPENDIX B

Anisotropic Line-of-Sight Velocity Dispersion

The two-dimensional integral, Equation (4.12), can be reduced to a one-

dimensional numerical integral by changing the order of integration and

performing the integration over r,

σ2
los(R) =

2G

ΥI(R)

∫ ∞

R

r1−2βa

√
r2 −R2

(B.1)

×
(

1 − βa
R2

r2

)
∫ ∞

r
x2βa−2ρ(x)M(x) dxdr

=
2G

ΥI(R)

∫ ∞

R
x2βa−2ρ(x)M(x)

∫ x

R

r1−2βa

√
r2 −R2

(B.2)

×
(

1 − βa
R2

r2

)

drdx.

The inner integral with respect to r can be calculated as a hypergeometric

function,

∫ x

R

r1−2βa

√
r2 −R2

dr − βaR
2

∫ x

R

r−1−2βa

√
r2 −R2

dr (B.3)

=

∫ x

0

r1−2βa

√
r2 −R2

dr −
∫ R

0

r1−2βa

√
r2 −R2

dr + βaR
2

∫ R

0

r−1−2βa

√
r2 −R2

dr

−βaR2

∫ x

0

r−1−2βa

√
r2 −R2

dr. (B.4)
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The integral representation of the hypergeometric function is given by,

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tz)a
dt, (B.5)

where Γ is the Gamma Function. Making the following substitutions in

Equation (B.1),

r = 1/
√
t, dr = −dt/2t3/2, (B.6)

the expression (B.4) becomes,

− 1

2

∫ 1/x2

0

tβa−3/2

(1 − tR2)1/2
dt+

1

2

∫ 1/R2

0

tβa−3/2

(1 − tR2)1/2
dt (B.7)

+
βaR

2

2

∫ 1/x2

0

tβa−1/2

(1 − tR2)1/2
dt− βaR

2

2

∫ 1/R2

0

tβa−1/2

(1 − tR2)1/2
dt

= − x1−2βa

2

∫ 1

0

sβa−3/2

(1 − sR2/x2)1/2
ds+

R1−2βa

2

∫ 1

0

sβa−3/2

(1 − s)1/2
ds

+
βaR

2x−1−2βa

2

∫ 1

0

sβa−1/2

(1 − sR2/x2)1/2
ds− βaR

2R−1−2βa

2

∫ 1

0

sβa−1/2

(1 − s)1/2
ds

where the upper integration limits have been scaled to unity in the sec-

ond equality. Identifying the parameters in the integrands with those in

the hypergeometric function, (B.5), the line-of-sight velocity dispersion for

arbitrary constant βa can be written as,

σ2
los(R) =

G

ΥI(R)

∫ ∞

R
x2βa−2ρ(x)M(x)×

Γ(βa − 1/2)

Γ(βa + 1/2)

[

R1−2βa
2F1

(

1

2
, βa −

1

2
;βa +

1

2
; 1

)]

− Γ(βa − 1/2)

Γ(βa + 1/2)

[

x1−2βa
2F1

(

1

2
, βa −

1

2
;βa +

1

2
;
R2

x2

)]

+ βaR
2 Γ(βa + 1/2)

Γ(βa + 3/2)

[

x−2βa−1
2F1

(

1

2
, βa +

1

2
;βa +

3

2
;
R2

x2

)]

− βaR
2 Γ(βa + 1/2)

Γ(βa + 3/2)

[

R−2βa−1
2F1

(

1

2
, βa +

1

2
;βa +

3

2
; 1

)]

dx.

(B.8)

One can see from the powers of x and R in βa that the result is dimensionally

consistent. To verify this result, we can input βa = 0 (isotropy), to recover
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the isotropic solution;

σ2
los(R, βa = 0) =

G

ΥI(R)

∫ ∞

R
x−2ρ(x)M(x) (B.9)

× Γ(−1/2)

Γ(1/2)

(

R2F1

(

1

2
,−1

2
;
1

2
; 1

)

− x2F1

(

1

2
,−1

2
;
1

2
;
R2

x2

))

dx

=
G

ΥI(R)

∫ ∞

R
x−2ρ(x)M(x)(−2)

(

0 − x

√

1 − R2

x2

)

dx

=
2G

ΥI(R)

∫ ∞

R
x−2ρ(x)M(x)

√

x2 −R2 dx,

where we have used the following identities of the hypergeometric function,

2F1(a, b; c; z) = (1 − z)c−a−b2F1(c− a, c− b; c; z), (B.10)

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, (B.11)

a = 1/2, b = −1/2, c = 1/2, (B.12)

and which returns the isotropic solution (Tremaine et al. 1994).



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Trott, Cathryn Margaret

 

Title: 

Structure of dark matter in galaxies

 

Date: 

2004-12

 

Citation: 

Trott, C. M. (2004). Structure of dark matter in galaxies. PhD thesis, School of Physics, The

University of Melbourne.

 

Publication Status:

Unpublished

 

Persistent Link: 

http://hdl.handle.net/11343/38929

 

File Description:

Structure of dark matter in galaxies

 

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.


